Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313592166> ?p ?o ?g. }
- W4313592166 endingPage "24" @default.
- W4313592166 startingPage "1" @default.
- W4313592166 abstract "AbstractLink prediction in networks is typically accomplished by estimating or ranking the probabilities of edges for all pairs of nodes. In practice, especially for social networks, the data are often collected by egocentric sampling, which means selecting a subset of nodes and recording all of their edges. This sampling mechanism requires different prediction tools than the typical assumption of links missing at random. We propose a new computationally efficient link prediction algorithm for egocentrically sampled networks, estimating the underlying probability matrix by estimating its row space. We empirically evaluate the method on several synthetic and real-world networks and show that it provides accurate predictions for network links. Supplemental materials including the code for experiments are available online.KEYWORDS: Binary data analysisMachine learningNetwork modeling Supplementary MaterialsThe following are included in the supplementary materials available online.Appendix (Appendix.pdf): References about empirical studies involving egocentric sampling of networks, proof of Theorem 2.1 and additional simulation results.Code (Code.zip): Code for experiments of the article. Each subfolder in the file has its own Readme.txt about the files and examples.AcknowledgmentsWe would like to thank the Editor, Associate Editor, and the referees for their constructive and helpful feedback.Disclosure StatementThe authors declare that they have no financial or nonfinancial interests that relate to the research described in this article.Additional informationFundingT. Li’s research is supported in part by NSF DMS grant 2015298 and the 3Caverliers Award at the University of Virginia. E. Levina’s research is supported in part by NSF DMS grants 1521551 and 1916222. J. Zhu’s research is supported in part by NSF DMS grant 1407698 and 1821243." @default.
- W4313592166 created "2023-01-06" @default.
- W4313592166 creator A5028466807 @default.
- W4313592166 creator A5033332525 @default.
- W4313592166 creator A5053664657 @default.
- W4313592166 creator A5077899199 @default.
- W4313592166 date "2023-02-16" @default.
- W4313592166 modified "2023-10-05" @default.
- W4313592166 title "Link Prediction for Egocentrically Sampled Networks" @default.
- W4313592166 cites W1489793438 @default.
- W4313592166 cites W1848620603 @default.
- W4313592166 cites W1852585435 @default.
- W4313592166 cites W1872749931 @default.
- W4313592166 cites W1979104937 @default.
- W4313592166 cites W1986413749 @default.
- W4313592166 cites W1993274456 @default.
- W4313592166 cites W1996023858 @default.
- W4313592166 cites W1996919757 @default.
- W4313592166 cites W1998269045 @default.
- W4313592166 cites W2003690406 @default.
- W4313592166 cites W2003707464 @default.
- W4313592166 cites W2005029869 @default.
- W4313592166 cites W2027377866 @default.
- W4313592166 cites W2027767695 @default.
- W4313592166 cites W2051105555 @default.
- W4313592166 cites W2065153599 @default.
- W4313592166 cites W2066459332 @default.
- W4313592166 cites W2069425373 @default.
- W4313592166 cites W2071321532 @default.
- W4313592166 cites W2076736556 @default.
- W4313592166 cites W2085724973 @default.
- W4313592166 cites W2100358124 @default.
- W4313592166 cites W2102907934 @default.
- W4313592166 cites W2110420634 @default.
- W4313592166 cites W2112090702 @default.
- W4313592166 cites W2134332047 @default.
- W4313592166 cites W2135223753 @default.
- W4313592166 cites W2135838082 @default.
- W4313592166 cites W2141696759 @default.
- W4313592166 cites W2143893259 @default.
- W4313592166 cites W2145067884 @default.
- W4313592166 cites W2465244929 @default.
- W4313592166 cites W2539716383 @default.
- W4313592166 cites W2585890768 @default.
- W4313592166 cites W2597630956 @default.
- W4313592166 cites W2735719388 @default.
- W4313592166 cites W2787894218 @default.
- W4313592166 cites W2810457311 @default.
- W4313592166 cites W2903178091 @default.
- W4313592166 cites W2911964244 @default.
- W4313592166 cites W2922828897 @default.
- W4313592166 cites W2962719258 @default.
- W4313592166 cites W2964200481 @default.
- W4313592166 cites W3015166416 @default.
- W4313592166 cites W3083421733 @default.
- W4313592166 cites W3088434977 @default.
- W4313592166 cites W3099640877 @default.
- W4313592166 cites W3100048617 @default.
- W4313592166 cites W3100144903 @default.
- W4313592166 cites W3100984977 @default.
- W4313592166 cites W3103377809 @default.
- W4313592166 cites W3104227803 @default.
- W4313592166 cites W3117508693 @default.
- W4313592166 cites W3121812901 @default.
- W4313592166 cites W3125496997 @default.
- W4313592166 cites W4232932184 @default.
- W4313592166 cites W4234057457 @default.
- W4313592166 cites W4250954493 @default.
- W4313592166 cites W745973578 @default.
- W4313592166 doi "https://doi.org/10.1080/10618600.2022.2163648" @default.
- W4313592166 hasPublicationYear "2023" @default.
- W4313592166 type Work @default.
- W4313592166 citedByCount "0" @default.
- W4313592166 crossrefType "journal-article" @default.
- W4313592166 hasAuthorship W4313592166A5028466807 @default.
- W4313592166 hasAuthorship W4313592166A5033332525 @default.
- W4313592166 hasAuthorship W4313592166A5053664657 @default.
- W4313592166 hasAuthorship W4313592166A5077899199 @default.
- W4313592166 hasBestOaLocation W43135921662 @default.
- W4313592166 hasConcept C106131492 @default.
- W4313592166 hasConcept C11413529 @default.
- W4313592166 hasConcept C119857082 @default.
- W4313592166 hasConcept C124101348 @default.
- W4313592166 hasConcept C140779682 @default.
- W4313592166 hasConcept C177264268 @default.
- W4313592166 hasConcept C189430467 @default.
- W4313592166 hasConcept C199360897 @default.
- W4313592166 hasConcept C2776760102 @default.
- W4313592166 hasConcept C2778701210 @default.
- W4313592166 hasConcept C31972630 @default.
- W4313592166 hasConcept C33923547 @default.
- W4313592166 hasConcept C41008148 @default.
- W4313592166 hasConcept C43126263 @default.
- W4313592166 hasConcept C48372109 @default.
- W4313592166 hasConcept C80444323 @default.
- W4313592166 hasConcept C94375191 @default.
- W4313592166 hasConcept C98045186 @default.
- W4313592166 hasConceptScore W4313592166C106131492 @default.