Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313592222> ?p ?o ?g. }
- W4313592222 endingPage "1167" @default.
- W4313592222 startingPage "1143" @default.
- W4313592222 abstract "We consider the classical momentum- or velocity-dependent two-dimensional Hamiltonian given by $$mathcal H_N = p_1^2 + p_2^2 +sum_{n=1}^N gamma_n(q_1 p_1 + q_2 p_2)^n ,$$ where $q_i$ and $p_i$ are generic canonical variables, $gamma_n$ are arbitrary coefficients, and $Nin mathbb N$. For $N=2$, being both $gamma_1,gamma_2$ different from zero, this reduces to the classical Zernike system. We prove that $mathcal H_N$ always provides a superintegrable system (for any value of $gamma_n$ and $N$) by obtaining the corresponding constants of the motion explicitly, which turn out to be of higher-order in the momenta. Such generic results are not only applied to the Euclidean plane, but also to the sphere and the hyperbolic plane. In the latter curved spaces, $mathcal H_N $ is expressed in geodesic polar coordinates showing that such a new superintegrable Hamiltonian can be regarded as a superposition of the isotropic 1:1 curved (Higgs) oscillator with even-order anharmonic curved oscillators plus another superposition of higher-order momentum-dependent potentials. Furthermore, the symmetry algebra determined by the constants of the motion is also studied, giving rise to a $(2N-1)$th-order polynomial algebra. As a byproduct, the Hamiltonian $mathcal H_N $ is interpreted as a family of superintegrable perturbations of the classical Zernike system. Finally, it is shown that $mathcal H_N$ (and so the Zernike system as well) is endowed with a Poisson $mathfrak{sl}(2,mathbb R)$-coalgebra symmetry which would allow for further possible generalizations that are also discussed." @default.
- W4313592222 created "2023-01-06" @default.
- W4313592222 creator A5004684986 @default.
- W4313592222 creator A5014666885 @default.
- W4313592222 creator A5045708456 @default.
- W4313592222 date "2023-01-04" @default.
- W4313592222 modified "2023-09-30" @default.
- W4313592222 title "Higher-order superintegrable momentum-dependent Hamiltonians on curved spaces from the classical Zernike system" @default.
- W4313592222 cites W1500696905 @default.
- W4313592222 cites W1606835899 @default.
- W4313592222 cites W1627583750 @default.
- W4313592222 cites W1963482968 @default.
- W4313592222 cites W1968030700 @default.
- W4313592222 cites W1971694221 @default.
- W4313592222 cites W1971944990 @default.
- W4313592222 cites W1974199460 @default.
- W4313592222 cites W1980094194 @default.
- W4313592222 cites W1981768392 @default.
- W4313592222 cites W1983695407 @default.
- W4313592222 cites W1993575821 @default.
- W4313592222 cites W1996610377 @default.
- W4313592222 cites W1998092869 @default.
- W4313592222 cites W1998534194 @default.
- W4313592222 cites W1999236296 @default.
- W4313592222 cites W2003459698 @default.
- W4313592222 cites W2005145933 @default.
- W4313592222 cites W2005621143 @default.
- W4313592222 cites W2023530987 @default.
- W4313592222 cites W2027831722 @default.
- W4313592222 cites W2036512367 @default.
- W4313592222 cites W2048676820 @default.
- W4313592222 cites W2049232038 @default.
- W4313592222 cites W2052266967 @default.
- W4313592222 cites W2052491862 @default.
- W4313592222 cites W2055921655 @default.
- W4313592222 cites W2061290909 @default.
- W4313592222 cites W2062684694 @default.
- W4313592222 cites W2074105127 @default.
- W4313592222 cites W2078345933 @default.
- W4313592222 cites W2083839416 @default.
- W4313592222 cites W2085076186 @default.
- W4313592222 cites W2101298552 @default.
- W4313592222 cites W2133879684 @default.
- W4313592222 cites W2141955292 @default.
- W4313592222 cites W2170310722 @default.
- W4313592222 cites W2345877267 @default.
- W4313592222 cites W2360186296 @default.
- W4313592222 cites W2592957077 @default.
- W4313592222 cites W2619709459 @default.
- W4313592222 cites W2747135208 @default.
- W4313592222 cites W2772754750 @default.
- W4313592222 cites W2909127977 @default.
- W4313592222 cites W2972898462 @default.
- W4313592222 cites W2977279321 @default.
- W4313592222 cites W3015832675 @default.
- W4313592222 cites W3036117741 @default.
- W4313592222 cites W3096404978 @default.
- W4313592222 cites W3098245726 @default.
- W4313592222 cites W3098599536 @default.
- W4313592222 cites W3100288279 @default.
- W4313592222 cites W3100616212 @default.
- W4313592222 cites W3101332457 @default.
- W4313592222 cites W3101596928 @default.
- W4313592222 cites W3101965702 @default.
- W4313592222 cites W3102585071 @default.
- W4313592222 cites W3105380047 @default.
- W4313592222 cites W3106046496 @default.
- W4313592222 cites W3125779494 @default.
- W4313592222 cites W3125962090 @default.
- W4313592222 cites W3194319407 @default.
- W4313592222 doi "https://doi.org/10.1088/1361-6544/acad5e" @default.
- W4313592222 hasPublicationYear "2023" @default.
- W4313592222 type Work @default.
- W4313592222 citedByCount "0" @default.
- W4313592222 crossrefType "journal-article" @default.
- W4313592222 hasAuthorship W4313592222A5004684986 @default.
- W4313592222 hasAuthorship W4313592222A5014666885 @default.
- W4313592222 hasAuthorship W4313592222A5045708456 @default.
- W4313592222 hasBestOaLocation W43135922222 @default.
- W4313592222 hasConcept C109798219 @default.
- W4313592222 hasConcept C121332964 @default.
- W4313592222 hasConcept C121770821 @default.
- W4313592222 hasConcept C126255220 @default.
- W4313592222 hasConcept C130787639 @default.
- W4313592222 hasConcept C134306372 @default.
- W4313592222 hasConcept C165699331 @default.
- W4313592222 hasConcept C177715462 @default.
- W4313592222 hasConcept C33923547 @default.
- W4313592222 hasConcept C37914503 @default.
- W4313592222 hasConcept C40934718 @default.
- W4313592222 hasConcept C62520636 @default.
- W4313592222 hasConcept C92423082 @default.
- W4313592222 hasConceptScore W4313592222C109798219 @default.
- W4313592222 hasConceptScore W4313592222C121332964 @default.
- W4313592222 hasConceptScore W4313592222C121770821 @default.
- W4313592222 hasConceptScore W4313592222C126255220 @default.
- W4313592222 hasConceptScore W4313592222C130787639 @default.
- W4313592222 hasConceptScore W4313592222C134306372 @default.