Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313592495> ?p ?o ?g. }
- W4313592495 endingPage "58" @default.
- W4313592495 startingPage "30" @default.
- W4313592495 abstract "Pan-sharpening is the fusion of panchromatic (PAN) image and multispectral (MS) image through certain rules to generate high-resolution multispectral (HRMS) image with vivid spatial details and uniform spectral distribution. It has become an important technology in remote sensing image processing. Recently, convolutional neural networks based on deep learning have achieved remarkable results in the field of pan-sharpening. Guided by this method, this paper proposes a pan-sharpening network PSAM-NET for remote sensing images based on depth expansion combined with Cross-Attention Fusion. It consists of gradient projection and the main image fusion module. The gradient projection mainly generates the fusion module by stacking low-resolution multispectral images and panchromatic images alternately, and two deep prior regularized optimization problem formulas are respectively solved by the gradient projection algorithm. The other principal image fusion module realizes double branch fusion, which is mainly composed of cross attention fusion and channel attention fusion, to produce an excellent fusion effect. The simulation and real data experiments were performed on the standard datasets WV2, GF-2, and QB. The qualitative analysis and quantitative comparison with the classical pan-sharpening method proved that the spatial information of the image obtained by this method is complete. The spectral distribution is uniform, and the evaluation index also has some advantages." @default.
- W4313592495 created "2023-01-06" @default.
- W4313592495 creator A5020817752 @default.
- W4313592495 creator A5028836596 @default.
- W4313592495 creator A5078116487 @default.
- W4313592495 date "2023-01-02" @default.
- W4313592495 modified "2023-10-15" @default.
- W4313592495 title "Pan-sharpening of remote sensing images based on gradient projection and cross fusion" @default.
- W4313592495 cites W1943127271 @default.
- W4313592495 cites W1992298203 @default.
- W4313592495 cites W2004913087 @default.
- W4313592495 cites W2020442368 @default.
- W4313592495 cites W2032275874 @default.
- W4313592495 cites W2038497950 @default.
- W4313592495 cites W2070922051 @default.
- W4313592495 cites W2078855750 @default.
- W4313592495 cites W2086440593 @default.
- W4313592495 cites W2111924917 @default.
- W4313592495 cites W2112693869 @default.
- W4313592495 cites W2124952510 @default.
- W4313592495 cites W2129953395 @default.
- W4313592495 cites W2141565698 @default.
- W4313592495 cites W2144436897 @default.
- W4313592495 cites W2150630348 @default.
- W4313592495 cites W2154789478 @default.
- W4313592495 cites W2159269332 @default.
- W4313592495 cites W2163677711 @default.
- W4313592495 cites W2164306391 @default.
- W4313592495 cites W2171108951 @default.
- W4313592495 cites W2171211028 @default.
- W4313592495 cites W2172185514 @default.
- W4313592495 cites W2211192759 @default.
- W4313592495 cites W2314528731 @default.
- W4313592495 cites W2462592242 @default.
- W4313592495 cites W2514340250 @default.
- W4313592495 cites W2566322263 @default.
- W4313592495 cites W2613155248 @default.
- W4313592495 cites W2619662254 @default.
- W4313592495 cites W2752782242 @default.
- W4313592495 cites W2767512561 @default.
- W4313592495 cites W2777033955 @default.
- W4313592495 cites W2889788332 @default.
- W4313592495 cites W2900702559 @default.
- W4313592495 cites W2943418786 @default.
- W4313592495 cites W2955671895 @default.
- W4313592495 cites W2962965405 @default.
- W4313592495 cites W2963495494 @default.
- W4313592495 cites W3009431086 @default.
- W4313592495 cites W3023221758 @default.
- W4313592495 cites W3023991509 @default.
- W4313592495 cites W3034502973 @default.
- W4313592495 cites W3082358108 @default.
- W4313592495 cites W3098542449 @default.
- W4313592495 cites W3118324154 @default.
- W4313592495 cites W3133902371 @default.
- W4313592495 doi "https://doi.org/10.1080/01431161.2022.2155088" @default.
- W4313592495 hasPublicationYear "2023" @default.
- W4313592495 type Work @default.
- W4313592495 citedByCount "0" @default.
- W4313592495 crossrefType "journal-article" @default.
- W4313592495 hasAuthorship W4313592495A5020817752 @default.
- W4313592495 hasAuthorship W4313592495A5028836596 @default.
- W4313592495 hasAuthorship W4313592495A5078116487 @default.
- W4313592495 hasConcept C107445234 @default.
- W4313592495 hasConcept C11413529 @default.
- W4313592495 hasConcept C115961682 @default.
- W4313592495 hasConcept C127313418 @default.
- W4313592495 hasConcept C138885662 @default.
- W4313592495 hasConcept C153180895 @default.
- W4313592495 hasConcept C154945302 @default.
- W4313592495 hasConcept C158525013 @default.
- W4313592495 hasConcept C173163844 @default.
- W4313592495 hasConcept C205372480 @default.
- W4313592495 hasConcept C2778971668 @default.
- W4313592495 hasConcept C2781137444 @default.
- W4313592495 hasConcept C31972630 @default.
- W4313592495 hasConcept C41008148 @default.
- W4313592495 hasConcept C41895202 @default.
- W4313592495 hasConcept C57493831 @default.
- W4313592495 hasConcept C62649853 @default.
- W4313592495 hasConcept C69744172 @default.
- W4313592495 hasConceptScore W4313592495C107445234 @default.
- W4313592495 hasConceptScore W4313592495C11413529 @default.
- W4313592495 hasConceptScore W4313592495C115961682 @default.
- W4313592495 hasConceptScore W4313592495C127313418 @default.
- W4313592495 hasConceptScore W4313592495C138885662 @default.
- W4313592495 hasConceptScore W4313592495C153180895 @default.
- W4313592495 hasConceptScore W4313592495C154945302 @default.
- W4313592495 hasConceptScore W4313592495C158525013 @default.
- W4313592495 hasConceptScore W4313592495C173163844 @default.
- W4313592495 hasConceptScore W4313592495C205372480 @default.
- W4313592495 hasConceptScore W4313592495C2778971668 @default.
- W4313592495 hasConceptScore W4313592495C2781137444 @default.
- W4313592495 hasConceptScore W4313592495C31972630 @default.
- W4313592495 hasConceptScore W4313592495C41008148 @default.
- W4313592495 hasConceptScore W4313592495C41895202 @default.
- W4313592495 hasConceptScore W4313592495C57493831 @default.
- W4313592495 hasConceptScore W4313592495C62649853 @default.