Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593005> ?p ?o ?g. }
- W4313593005 endingPage "123086" @default.
- W4313593005 startingPage "123086" @default.
- W4313593005 abstract "The energy demand is still increasing across the globe, while environmental concerns about global warming effect and greenhouse gases have augmented recently. CO2 injection into mature oil reservoirs is an interesting operation that could help us supply the uprising demand while saving the environment. Having accurate knowledge about CO2 minimum miscibility pressure (MMP) is of utmost importance in designing a successful operation. This study mainly focuses on proposing several tools based on powerful tree-based and deep learning algorithms for estimating the MMP of CO2-crude oil system based on an extensive databank. The models employed in this study include extreme gradient boosting (XGBoost), categorical boosting (CatBoost), light gradient boosting machine (LGBM), random forest (RF), deep multi-layer neural network (deep MLN), deep belief network (DBN), and convolutional neural network (CNN). The models were trained and verified using 310 data points. Along with intelligent models, seven popular empirical correlations and two computational approaches, which are based on thermodynamics, were utilized to be compared with the proposed models. The outcomes expressed that the CatBoost model could estimate CO2 MMP values, using mole percent of volatile (C1 and N2) and intermediate (CO2, H2S, and C2–C5) fractions of oil, the average critical temperature of injection gas (Tcave), reservoir temperature (Tres), and molecular weight of C5+ fraction of oil (MWc5+) as input variables, with a total AARD of 1.34 %. Moreover, the variable impact examination showed that reservoir temperature greatly affects the MMP predictions. Finally, the Leverage approach verified the reliability of the databank and wide applicability domain of the developed CatBoost model spotting 5 outlier points (out of 310 points) only. The findings of this communication shed light on the high accuracy and reliability of CatBoost model in estimating CO2 MMP in a wide range of operational conditions." @default.
- W4313593005 created "2023-01-06" @default.
- W4313593005 creator A5006120350 @default.
- W4313593005 creator A5037841609 @default.
- W4313593005 creator A5042189225 @default.
- W4313593005 creator A5061061476 @default.
- W4313593005 creator A5068850423 @default.
- W4313593005 creator A5069615249 @default.
- W4313593005 creator A5071677296 @default.
- W4313593005 creator A5073531557 @default.
- W4313593005 creator A5080185143 @default.
- W4313593005 date "2023-04-01" @default.
- W4313593005 modified "2023-10-18" @default.
- W4313593005 title "Modelling minimum miscibility pressure of CO2-crude oil systems using deep learning, tree-based, and thermodynamic models: Application to CO2 sequestration and enhanced oil recovery" @default.
- W4313593005 cites W1483835818 @default.
- W4313593005 cites W1485846902 @default.
- W4313593005 cites W1927276126 @default.
- W4313593005 cites W1964186109 @default.
- W4313593005 cites W1965513730 @default.
- W4313593005 cites W1965775669 @default.
- W4313593005 cites W1966798089 @default.
- W4313593005 cites W1970023228 @default.
- W4313593005 cites W1971290568 @default.
- W4313593005 cites W1977918754 @default.
- W4313593005 cites W1984010507 @default.
- W4313593005 cites W1985600426 @default.
- W4313593005 cites W1989683966 @default.
- W4313593005 cites W1990420872 @default.
- W4313593005 cites W1991246908 @default.
- W4313593005 cites W1991932437 @default.
- W4313593005 cites W1996324466 @default.
- W4313593005 cites W1997292604 @default.
- W4313593005 cites W2000872353 @default.
- W4313593005 cites W2003780501 @default.
- W4313593005 cites W2009343133 @default.
- W4313593005 cites W2010044158 @default.
- W4313593005 cites W2016187546 @default.
- W4313593005 cites W2017427082 @default.
- W4313593005 cites W2017760436 @default.
- W4313593005 cites W2017979142 @default.
- W4313593005 cites W2019006876 @default.
- W4313593005 cites W2024467790 @default.
- W4313593005 cites W2025797714 @default.
- W4313593005 cites W2027838767 @default.
- W4313593005 cites W2031016933 @default.
- W4313593005 cites W2032643449 @default.
- W4313593005 cites W2032702254 @default.
- W4313593005 cites W2035203277 @default.
- W4313593005 cites W2043308012 @default.
- W4313593005 cites W2048504911 @default.
- W4313593005 cites W2051222413 @default.
- W4313593005 cites W2051890803 @default.
- W4313593005 cites W2052259071 @default.
- W4313593005 cites W2054716083 @default.
- W4313593005 cites W2055929657 @default.
- W4313593005 cites W2064456095 @default.
- W4313593005 cites W2074435123 @default.
- W4313593005 cites W2076063813 @default.
- W4313593005 cites W2077007432 @default.
- W4313593005 cites W2079597494 @default.
- W4313593005 cites W2081018899 @default.
- W4313593005 cites W2081169954 @default.
- W4313593005 cites W2082087356 @default.
- W4313593005 cites W2083017599 @default.
- W4313593005 cites W2083450550 @default.
- W4313593005 cites W2087623443 @default.
- W4313593005 cites W2090706201 @default.
- W4313593005 cites W2102543001 @default.
- W4313593005 cites W2157043635 @default.
- W4313593005 cites W2170336234 @default.
- W4313593005 cites W2227883226 @default.
- W4313593005 cites W2327884411 @default.
- W4313593005 cites W2466359547 @default.
- W4313593005 cites W2498631646 @default.
- W4313593005 cites W2503576947 @default.
- W4313593005 cites W2530018583 @default.
- W4313593005 cites W2536712265 @default.
- W4313593005 cites W2547344379 @default.
- W4313593005 cites W2549045613 @default.
- W4313593005 cites W2605105641 @default.
- W4313593005 cites W2610470215 @default.
- W4313593005 cites W2618598738 @default.
- W4313593005 cites W2753772327 @default.
- W4313593005 cites W2789876780 @default.
- W4313593005 cites W2791718738 @default.
- W4313593005 cites W2890345492 @default.
- W4313593005 cites W2906922093 @default.
- W4313593005 cites W2911964244 @default.
- W4313593005 cites W2919115771 @default.
- W4313593005 cites W2939192119 @default.
- W4313593005 cites W2973817809 @default.
- W4313593005 cites W2980576780 @default.
- W4313593005 cites W3005317040 @default.
- W4313593005 cites W3009326344 @default.
- W4313593005 cites W3033983598 @default.
- W4313593005 cites W3036802276 @default.
- W4313593005 cites W3044993830 @default.
- W4313593005 cites W3094948551 @default.