Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593212> ?p ?o ?g. }
- W4313593212 endingPage "2759" @default.
- W4313593212 startingPage "2752" @default.
- W4313593212 abstract "With the further development of the concept of green chemistry, the new generation of energetic materials tends to exhibit detonation properties such as higher insensitivity, higher density, and higher energy. Therefore, the precise molecular design and green and efficient synthesis of energetic materials will be one of the serious challenges. For the purpose of accurate prediction of detonation performance of energetic materials, an ensemble modeling strategy based on the combination of Monte Carlo (MC) and variable importance measurement (VIM) improved random forest (RF) and quantitative structure-property relationship (QSPR) is proposed, which was successfully used for density prediction of energetic materials. First, the structure of 162 energetic compounds was optimized by Gaussian software, and the molecular descriptor data were calculated by CODESSA software based on the optimized molecular structure. Then, the MCVIMRF_Med ensemble model was constructed on the basis of the above molecular descriptor data and the corresponding energetic compound density index. The joint X-Y distance algorithm (SPXY) is used to partition the data set. And then, MC is used to further divide the calibration set data into multiple subsets for the construction of the ensemble model. The subset size and the number of iterations of the MCVIMRF_Med ensemble model were optimized through MC cross validation. The final output strategy of the ensemble model is optimized based on the optimized parameters, and an output optimization method based on median screening is proposed and successfully applied for the prediction performance optimization of the MCVIMRF_Med ensemble model. To further investigate the performance of the MCVIMRF_Med ensemble model, the performance of it was compared with partial least squares, RF, VIMRF, and MCVIMRF calibration models. It shows that the MCVIMRF_Med ensemble model can achieve a better prediction result for the density of energetic materials, with R2CV of 0.9596, RMSECV of 0.0437 g/cm3, R2P of 0.9768, RMSEP of 0.0578 g/cm3, and relative analysis deviation of prediction set of 3.951. Therefore, the MCVIMRF_Med ensemble modeling strategy combined with QSPR is an effective approach for the density prediction of energetic materials. This work is expected to provide new research ideas and technical support for accurate prediction of detonation performance of energetic materials." @default.
- W4313593212 created "2023-01-06" @default.
- W4313593212 creator A5001016058 @default.
- W4313593212 creator A5031381757 @default.
- W4313593212 creator A5034552238 @default.
- W4313593212 creator A5046828298 @default.
- W4313593212 creator A5049640298 @default.
- W4313593212 creator A5050503825 @default.
- W4313593212 creator A5054577395 @default.
- W4313593212 creator A5078704875 @default.
- W4313593212 creator A5091467752 @default.
- W4313593212 date "2023-01-04" @default.
- W4313593212 modified "2023-10-14" @default.
- W4313593212 title "Novel Random Forest Ensemble Modeling Strategy Combined with Quantitative Structure–Property Relationship for Density Prediction of Energetic Materials" @default.
- W4313593212 cites W1963672647 @default.
- W4313593212 cites W1968984443 @default.
- W4313593212 cites W1988195734 @default.
- W4313593212 cites W1989918226 @default.
- W4313593212 cites W1997270149 @default.
- W4313593212 cites W2002033062 @default.
- W4313593212 cites W2005256561 @default.
- W4313593212 cites W2006676204 @default.
- W4313593212 cites W2006881475 @default.
- W4313593212 cites W2018338598 @default.
- W4313593212 cites W2019966295 @default.
- W4313593212 cites W2046653925 @default.
- W4313593212 cites W2060890221 @default.
- W4313593212 cites W2066536516 @default.
- W4313593212 cites W2070603512 @default.
- W4313593212 cites W2073503722 @default.
- W4313593212 cites W2074166357 @default.
- W4313593212 cites W2076018148 @default.
- W4313593212 cites W2163570104 @default.
- W4313593212 cites W2208820276 @default.
- W4313593212 cites W2302084759 @default.
- W4313593212 cites W2315837940 @default.
- W4313593212 cites W2342646976 @default.
- W4313593212 cites W2530043610 @default.
- W4313593212 cites W2592759260 @default.
- W4313593212 cites W2747592475 @default.
- W4313593212 cites W2789758093 @default.
- W4313593212 cites W2795446706 @default.
- W4313593212 cites W2911964244 @default.
- W4313593212 cites W2970602317 @default.
- W4313593212 cites W2978404528 @default.
- W4313593212 cites W3017633633 @default.
- W4313593212 cites W3023042104 @default.
- W4313593212 cites W3042021489 @default.
- W4313593212 cites W3125279756 @default.
- W4313593212 cites W3128536587 @default.
- W4313593212 cites W3178382869 @default.
- W4313593212 cites W4220856545 @default.
- W4313593212 cites W4289223611 @default.
- W4313593212 cites W4295034629 @default.
- W4313593212 cites W911658671 @default.
- W4313593212 doi "https://doi.org/10.1021/acsomega.2c07436" @default.
- W4313593212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36687054" @default.
- W4313593212 hasPublicationYear "2023" @default.
- W4313593212 type Work @default.
- W4313593212 citedByCount "2" @default.
- W4313593212 countsByYear W43135932122023 @default.
- W4313593212 crossrefType "journal-article" @default.
- W4313593212 hasAuthorship W4313593212A5001016058 @default.
- W4313593212 hasAuthorship W4313593212A5031381757 @default.
- W4313593212 hasAuthorship W4313593212A5034552238 @default.
- W4313593212 hasAuthorship W4313593212A5046828298 @default.
- W4313593212 hasAuthorship W4313593212A5049640298 @default.
- W4313593212 hasAuthorship W4313593212A5050503825 @default.
- W4313593212 hasAuthorship W4313593212A5054577395 @default.
- W4313593212 hasAuthorship W4313593212A5078704875 @default.
- W4313593212 hasAuthorship W4313593212A5091467752 @default.
- W4313593212 hasBestOaLocation W43135932121 @default.
- W4313593212 hasConcept C105795698 @default.
- W4313593212 hasConcept C11413529 @default.
- W4313593212 hasConcept C119857082 @default.
- W4313593212 hasConcept C119898033 @default.
- W4313593212 hasConcept C121332964 @default.
- W4313593212 hasConcept C121864883 @default.
- W4313593212 hasConcept C147597530 @default.
- W4313593212 hasConcept C154238967 @default.
- W4313593212 hasConcept C154945302 @default.
- W4313593212 hasConcept C163716315 @default.
- W4313593212 hasConcept C164126121 @default.
- W4313593212 hasConcept C169258074 @default.
- W4313593212 hasConcept C178790620 @default.
- W4313593212 hasConcept C185592680 @default.
- W4313593212 hasConcept C19499675 @default.
- W4313593212 hasConcept C203397868 @default.
- W4313593212 hasConcept C28556851 @default.
- W4313593212 hasConcept C29235156 @default.
- W4313593212 hasConcept C33923547 @default.
- W4313593212 hasConcept C41008148 @default.
- W4313593212 hasConcept C50311922 @default.
- W4313593212 hasConceptScore W4313593212C105795698 @default.
- W4313593212 hasConceptScore W4313593212C11413529 @default.
- W4313593212 hasConceptScore W4313593212C119857082 @default.
- W4313593212 hasConceptScore W4313593212C119898033 @default.
- W4313593212 hasConceptScore W4313593212C121332964 @default.