Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593335> ?p ?o ?g. }
- W4313593335 endingPage "110089" @default.
- W4313593335 startingPage "110089" @default.
- W4313593335 abstract "Deep neural networks exhibit excellent performance in fault feature extraction for considerable amounts of data. However, data labeling is a difficult task in practical engineering, which may lead to problems in fault diagnosis particularly when faults are weak. To resolve the foregoing, a semi–pseudo–labeling diagnosis system is proposed in this paper. The proposed system considers the confidence and reliability of samples to cope with situations where labels are insufficient and faults are weak. By adding pseudo–labels, unlabeled data whose fault information is swamped by a large amount of noise can achieve low–density separation and entropy regularization in the sample space. Consequently, the training of deep learning models for weak–fault diagnosis is supported. Regarding the traditional pseudo–labeling problems in weak–fault–related feature extraction, a series of solutions has been proposed to solve the problems in the field of fault diagnosis. The designed model reduces pseudo–label noise and enhances the capability of weak–fault–related feature extraction. The effectiveness of this method was validated on the datasets collected by simulating faulty bearings and those sustaining actual failure." @default.
- W4313593335 created "2023-01-06" @default.
- W4313593335 creator A5000873011 @default.
- W4313593335 creator A5001668408 @default.
- W4313593335 creator A5006641436 @default.
- W4313593335 creator A5065229969 @default.
- W4313593335 creator A5068744113 @default.
- W4313593335 creator A5085235471 @default.
- W4313593335 creator A5089503989 @default.
- W4313593335 date "2023-04-01" @default.
- W4313593335 modified "2023-10-16" @default.
- W4313593335 title "Joint learning system based on semi–pseudo–label reliability assessment for weak–fault diagnosis with few labels" @default.
- W4313593335 cites W1597576211 @default.
- W4313593335 cites W1964511482 @default.
- W4313593335 cites W1985716425 @default.
- W4313593335 cites W2028362538 @default.
- W4313593335 cites W2041770946 @default.
- W4313593335 cites W2046674752 @default.
- W4313593335 cites W2063483719 @default.
- W4313593335 cites W2087864780 @default.
- W4313593335 cites W2100187942 @default.
- W4313593335 cites W2165698076 @default.
- W4313593335 cites W2219903032 @default.
- W4313593335 cites W2317595875 @default.
- W4313593335 cites W2586262374 @default.
- W4313593335 cites W2588822028 @default.
- W4313593335 cites W2731372149 @default.
- W4313593335 cites W2762355244 @default.
- W4313593335 cites W2763583057 @default.
- W4313593335 cites W2765226309 @default.
- W4313593335 cites W2792098970 @default.
- W4313593335 cites W2793164711 @default.
- W4313593335 cites W2805610399 @default.
- W4313593335 cites W2884166367 @default.
- W4313593335 cites W2886794804 @default.
- W4313593335 cites W2900438754 @default.
- W4313593335 cites W2907541186 @default.
- W4313593335 cites W2925974354 @default.
- W4313593335 cites W2927893014 @default.
- W4313593335 cites W2946805823 @default.
- W4313593335 cites W2948539592 @default.
- W4313593335 cites W2984353870 @default.
- W4313593335 cites W2999309480 @default.
- W4313593335 cites W3002188287 @default.
- W4313593335 cites W3015173390 @default.
- W4313593335 cites W3019913914 @default.
- W4313593335 cites W3021048621 @default.
- W4313593335 cites W3025475838 @default.
- W4313593335 cites W3034218934 @default.
- W4313593335 cites W3034878846 @default.
- W4313593335 cites W3035524453 @default.
- W4313593335 cites W3049504263 @default.
- W4313593335 cites W3122126208 @default.
- W4313593335 cites W3149994345 @default.
- W4313593335 cites W3164543983 @default.
- W4313593335 cites W3175081134 @default.
- W4313593335 cites W3177862163 @default.
- W4313593335 cites W3182599618 @default.
- W4313593335 cites W3194185277 @default.
- W4313593335 cites W3201753566 @default.
- W4313593335 cites W3209651137 @default.
- W4313593335 cites W4205902884 @default.
- W4313593335 cites W923818475 @default.
- W4313593335 doi "https://doi.org/10.1016/j.ymssp.2022.110089" @default.
- W4313593335 hasPublicationYear "2023" @default.
- W4313593335 type Work @default.
- W4313593335 citedByCount "8" @default.
- W4313593335 countsByYear W43135933352023 @default.
- W4313593335 crossrefType "journal-article" @default.
- W4313593335 hasAuthorship W4313593335A5000873011 @default.
- W4313593335 hasAuthorship W4313593335A5001668408 @default.
- W4313593335 hasAuthorship W4313593335A5006641436 @default.
- W4313593335 hasAuthorship W4313593335A5065229969 @default.
- W4313593335 hasAuthorship W4313593335A5068744113 @default.
- W4313593335 hasAuthorship W4313593335A5085235471 @default.
- W4313593335 hasAuthorship W4313593335A5089503989 @default.
- W4313593335 hasConcept C106301342 @default.
- W4313593335 hasConcept C119857082 @default.
- W4313593335 hasConcept C121332964 @default.
- W4313593335 hasConcept C124101348 @default.
- W4313593335 hasConcept C127313418 @default.
- W4313593335 hasConcept C153180895 @default.
- W4313593335 hasConcept C154945302 @default.
- W4313593335 hasConcept C163258240 @default.
- W4313593335 hasConcept C165205528 @default.
- W4313593335 hasConcept C175551986 @default.
- W4313593335 hasConcept C2776135515 @default.
- W4313593335 hasConcept C41008148 @default.
- W4313593335 hasConcept C43214815 @default.
- W4313593335 hasConcept C50644808 @default.
- W4313593335 hasConcept C52622490 @default.
- W4313593335 hasConcept C62520636 @default.
- W4313593335 hasConcept C83665646 @default.
- W4313593335 hasConceptScore W4313593335C106301342 @default.
- W4313593335 hasConceptScore W4313593335C119857082 @default.
- W4313593335 hasConceptScore W4313593335C121332964 @default.
- W4313593335 hasConceptScore W4313593335C124101348 @default.
- W4313593335 hasConceptScore W4313593335C127313418 @default.