Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593345> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4313593345 endingPage "105678" @default.
- W4313593345 startingPage "105678" @default.
- W4313593345 abstract "Cryogenic CMOS circuits are widely applied to various fields, such as infrared focal plane arrays, space exploration, and quantum computing. The carrier freeze-out effect at cryogenic temperatures leads to abnormal changes in the characterization of the devices. These cause the performance degradation of circuits or even failure to work. As the industry-standard models provided by manufacturers of CMOS technology cannot describe the cryogenic effects, a complete and precise cryogenic model is required for circuit simulation at cryogenic temperatures. This paper presents the characterization of Semiconductor Manufacturing International Corporation (SMIC) 0.18μm CMOS technology at the liquid helium temperature (LHT). To solve the above problem, a metal–oxide–semiconductor field-effect transistor (MOSFET) modeling method at cryogenic temperatures using a back propagation (BP) neural network is proposed. The cryogenic model is first revised based on the BSIM model by extracting physical parameters. Then an optimization model predicted by BP neural network is proposed to calibrate the cryogenic effects. The cryo-model composed of the revised BSIM model and the optimization model can accurately describe the characteristics of MOSFETs with various aspect ratios under different bias voltages at 4.2K, which is not accessible for the standard BSIM model. Meanwhile, the optimization model based on BP neural network has been translated into Verilog-A language to be applied to the SPICE simulator successfully." @default.
- W4313593345 created "2023-01-06" @default.
- W4313593345 creator A5012948983 @default.
- W4313593345 creator A5027835607 @default.
- W4313593345 creator A5040717619 @default.
- W4313593345 creator A5049808046 @default.
- W4313593345 creator A5057837748 @default.
- W4313593345 creator A5058814917 @default.
- W4313593345 creator A5081095613 @default.
- W4313593345 date "2023-02-01" @default.
- W4313593345 modified "2023-09-24" @default.
- W4313593345 title "MOSFET modeling of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si3.svg display=inline id=d1e2343><mml:mrow><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>18</mml:mn><mml:mspace class=nbsp width=1em /><mml:mi mathvariant=normal>μ</mml:mi><mml:mi mathvariant=normal>m</mml:mi></mml:mrow></mml:math> CMOS technology at 4.2K using BP neural network" @default.
- W4313593345 cites W1999784799 @default.
- W4313593345 cites W2010870704 @default.
- W4313593345 cites W2054884704 @default.
- W4313593345 cites W2082480597 @default.
- W4313593345 cites W2128201333 @default.
- W4313593345 cites W2273526871 @default.
- W4313593345 cites W2600409602 @default.
- W4313593345 cites W2900545235 @default.
- W4313593345 cites W2903421386 @default.
- W4313593345 cites W2996016495 @default.
- W4313593345 cites W3095479465 @default.
- W4313593345 cites W3115815017 @default.
- W4313593345 cites W3124658597 @default.
- W4313593345 cites W3125343022 @default.
- W4313593345 cites W3141629518 @default.
- W4313593345 doi "https://doi.org/10.1016/j.mejo.2022.105678" @default.
- W4313593345 hasPublicationYear "2023" @default.
- W4313593345 type Work @default.
- W4313593345 citedByCount "1" @default.
- W4313593345 countsByYear W43135933452023 @default.
- W4313593345 crossrefType "journal-article" @default.
- W4313593345 hasAuthorship W4313593345A5012948983 @default.
- W4313593345 hasAuthorship W4313593345A5027835607 @default.
- W4313593345 hasAuthorship W4313593345A5040717619 @default.
- W4313593345 hasAuthorship W4313593345A5049808046 @default.
- W4313593345 hasAuthorship W4313593345A5057837748 @default.
- W4313593345 hasAuthorship W4313593345A5058814917 @default.
- W4313593345 hasAuthorship W4313593345A5081095613 @default.
- W4313593345 hasConcept C119599485 @default.
- W4313593345 hasConcept C127413603 @default.
- W4313593345 hasConcept C192562407 @default.
- W4313593345 hasConcept C41008148 @default.
- W4313593345 hasConcept C46362747 @default.
- W4313593345 hasConcept C49040817 @default.
- W4313593345 hasConceptScore W4313593345C119599485 @default.
- W4313593345 hasConceptScore W4313593345C127413603 @default.
- W4313593345 hasConceptScore W4313593345C192562407 @default.
- W4313593345 hasConceptScore W4313593345C41008148 @default.
- W4313593345 hasConceptScore W4313593345C46362747 @default.
- W4313593345 hasConceptScore W4313593345C49040817 @default.
- W4313593345 hasFunder F4320326707 @default.
- W4313593345 hasLocation W43135933451 @default.
- W4313593345 hasOpenAccess W4313593345 @default.
- W4313593345 hasPrimaryLocation W43135933451 @default.
- W4313593345 hasRelatedWork W1526001157 @default.
- W4313593345 hasRelatedWork W2139089416 @default.
- W4313593345 hasRelatedWork W2139774918 @default.
- W4313593345 hasRelatedWork W2139810884 @default.
- W4313593345 hasRelatedWork W2233322791 @default.
- W4313593345 hasRelatedWork W2296984664 @default.
- W4313593345 hasRelatedWork W2544401233 @default.
- W4313593345 hasRelatedWork W2748952813 @default.
- W4313593345 hasRelatedWork W2899084033 @default.
- W4313593345 hasRelatedWork W2564859006 @default.
- W4313593345 hasVolume "132" @default.
- W4313593345 isParatext "false" @default.
- W4313593345 isRetracted "false" @default.
- W4313593345 workType "article" @default.