Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593358> ?p ?o ?g. }
- W4313593358 endingPage "108213" @default.
- W4313593358 startingPage "108213" @default.
- W4313593358 abstract "A signal processing method based on friction noise is introduced to predict the tribological properties of polymers in a wide temperature domain. Three different machine learning algorithms, XGBoost, LightGBM and CatBoost are used to establish a mapping relationship between the time–frequency domain features of friction noise and the friction coefficient. The friction coefficients of pairs of four polymers and seven metals are predicted at five temperatures and three load/speed conditions of point contacts in a wide temperature domain from − 120–25 ℃. Performance analysis reveals that the machine learning approach satisfactorily predicts the friction coefficients of different polymer–metal pairs in a wide temperature range from tribological test data. This method can be used for in-situ monitoring on tribological properties." @default.
- W4313593358 created "2023-01-06" @default.
- W4313593358 creator A5006506906 @default.
- W4313593358 creator A5017911655 @default.
- W4313593358 creator A5030028368 @default.
- W4313593358 creator A5030324438 @default.
- W4313593358 creator A5061713333 @default.
- W4313593358 date "2023-02-01" @default.
- W4313593358 modified "2023-09-25" @default.
- W4313593358 title "Prediction of the tribological properties of a polymer surface in a wide temperature range using machine learning algorithm based on friction noise" @default.
- W4313593358 cites W107790651 @default.
- W4313593358 cites W1522157189 @default.
- W4313593358 cites W1973325032 @default.
- W4313593358 cites W1976468744 @default.
- W4313593358 cites W1988790447 @default.
- W4313593358 cites W2005258411 @default.
- W4313593358 cites W2007221293 @default.
- W4313593358 cites W2010459211 @default.
- W4313593358 cites W2017420190 @default.
- W4313593358 cites W2019101578 @default.
- W4313593358 cites W2028428047 @default.
- W4313593358 cites W2031423206 @default.
- W4313593358 cites W2033551122 @default.
- W4313593358 cites W2051939515 @default.
- W4313593358 cites W2063113482 @default.
- W4313593358 cites W2067802406 @default.
- W4313593358 cites W2070684008 @default.
- W4313593358 cites W2077388943 @default.
- W4313593358 cites W2088638930 @default.
- W4313593358 cites W2089892499 @default.
- W4313593358 cites W2091827401 @default.
- W4313593358 cites W2095168232 @default.
- W4313593358 cites W2098892599 @default.
- W4313593358 cites W2106100548 @default.
- W4313593358 cites W2167263515 @default.
- W4313593358 cites W2317118466 @default.
- W4313593358 cites W2337825736 @default.
- W4313593358 cites W2531288459 @default.
- W4313593358 cites W2598427477 @default.
- W4313593358 cites W2621019941 @default.
- W4313593358 cites W2750857672 @default.
- W4313593358 cites W2769319337 @default.
- W4313593358 cites W2792872702 @default.
- W4313593358 cites W2913211269 @default.
- W4313593358 cites W2950380591 @default.
- W4313593358 cites W3013058567 @default.
- W4313593358 cites W3027452872 @default.
- W4313593358 cites W3031893421 @default.
- W4313593358 cites W3093010392 @default.
- W4313593358 cites W3174106600 @default.
- W4313593358 doi "https://doi.org/10.1016/j.triboint.2022.108213" @default.
- W4313593358 hasPublicationYear "2023" @default.
- W4313593358 type Work @default.
- W4313593358 citedByCount "2" @default.
- W4313593358 countsByYear W43135933582023 @default.
- W4313593358 crossrefType "journal-article" @default.
- W4313593358 hasAuthorship W4313593358A5006506906 @default.
- W4313593358 hasAuthorship W4313593358A5017911655 @default.
- W4313593358 hasAuthorship W4313593358A5030028368 @default.
- W4313593358 hasAuthorship W4313593358A5030324438 @default.
- W4313593358 hasAuthorship W4313593358A5061713333 @default.
- W4313593358 hasConcept C11413529 @default.
- W4313593358 hasConcept C115961682 @default.
- W4313593358 hasConcept C121332964 @default.
- W4313593358 hasConcept C127413603 @default.
- W4313593358 hasConcept C154945302 @default.
- W4313593358 hasConcept C159985019 @default.
- W4313593358 hasConcept C167310744 @default.
- W4313593358 hasConcept C192562407 @default.
- W4313593358 hasConcept C204323151 @default.
- W4313593358 hasConcept C2989152160 @default.
- W4313593358 hasConcept C39353612 @default.
- W4313593358 hasConcept C41008148 @default.
- W4313593358 hasConcept C521977710 @default.
- W4313593358 hasConcept C78519656 @default.
- W4313593358 hasConcept C97355855 @default.
- W4313593358 hasConcept C99498987 @default.
- W4313593358 hasConceptScore W4313593358C11413529 @default.
- W4313593358 hasConceptScore W4313593358C115961682 @default.
- W4313593358 hasConceptScore W4313593358C121332964 @default.
- W4313593358 hasConceptScore W4313593358C127413603 @default.
- W4313593358 hasConceptScore W4313593358C154945302 @default.
- W4313593358 hasConceptScore W4313593358C159985019 @default.
- W4313593358 hasConceptScore W4313593358C167310744 @default.
- W4313593358 hasConceptScore W4313593358C192562407 @default.
- W4313593358 hasConceptScore W4313593358C204323151 @default.
- W4313593358 hasConceptScore W4313593358C2989152160 @default.
- W4313593358 hasConceptScore W4313593358C39353612 @default.
- W4313593358 hasConceptScore W4313593358C41008148 @default.
- W4313593358 hasConceptScore W4313593358C521977710 @default.
- W4313593358 hasConceptScore W4313593358C78519656 @default.
- W4313593358 hasConceptScore W4313593358C97355855 @default.
- W4313593358 hasConceptScore W4313593358C99498987 @default.
- W4313593358 hasLocation W43135933581 @default.
- W4313593358 hasOpenAccess W4313593358 @default.
- W4313593358 hasPrimaryLocation W43135933581 @default.
- W4313593358 hasRelatedWork W2028773235 @default.
- W4313593358 hasRelatedWork W2048756277 @default.