Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593652> ?p ?o ?g. }
- W4313593652 endingPage "184" @default.
- W4313593652 startingPage "165" @default.
- W4313593652 abstract "Multi-label learning deals with a kind of problem that the given samples areassociated with multiple labels simultaneously. Recently, multi-label learning has become a populartopic in the literatures of machine learning and has attracted lots of researches. In this paper, we propose a new multi-view multi-label learning method by considering the label correlation, which is called ELSMML. Based on the high-order strategy, we construct a crafted label correlation matrix to describe the relationships among labels. We further utilize multi-view learning and dimension reduction to exploit the high-level latent semantic label information and the latent feature information, so as to build a classifier in the low dimensional space. In addition, we apply manifold regularization terms to make the data samples in the low dimensional space have the same intrinsic structure as the original data. After that, we put forward the accelerated proximal gradient method to optimize the ELSMML model and obtain thepredictive classifier. Besides, we conduct convergence analysis and computational complexity analysis for ELSMML method. In the experiments, the ELSMML method can achieve better performance on the evaluation metrics compared with other baselines." @default.
- W4313593652 created "2023-01-06" @default.
- W4313593652 creator A5000386870 @default.
- W4313593652 creator A5009705946 @default.
- W4313593652 creator A5031801059 @default.
- W4313593652 creator A5034388858 @default.
- W4313593652 creator A5068260072 @default.
- W4313593652 creator A5073063585 @default.
- W4313593652 creator A5073531557 @default.
- W4313593652 creator A5090815103 @default.
- W4313593652 date "2023-05-01" @default.
- W4313593652 modified "2023-10-16" @default.
- W4313593652 title "Multi-view multi-label learning with high-order label correlation" @default.
- W4313593652 cites W1964590153 @default.
- W4313593652 cites W1999954155 @default.
- W4313593652 cites W2029517229 @default.
- W4313593652 cites W2052684427 @default.
- W4313593652 cites W2099330554 @default.
- W4313593652 cites W2100556411 @default.
- W4313593652 cites W2114315281 @default.
- W4313593652 cites W2119466907 @default.
- W4313593652 cites W2142674578 @default.
- W4313593652 cites W2153635508 @default.
- W4313593652 cites W2156935079 @default.
- W4313593652 cites W2169278871 @default.
- W4313593652 cites W2241072627 @default.
- W4313593652 cites W2296034168 @default.
- W4313593652 cites W2343475530 @default.
- W4313593652 cites W2489724718 @default.
- W4313593652 cites W2511043111 @default.
- W4313593652 cites W2519969774 @default.
- W4313593652 cites W2540382275 @default.
- W4313593652 cites W2605572715 @default.
- W4313593652 cites W2741998188 @default.
- W4313593652 cites W2802345189 @default.
- W4313593652 cites W2894544906 @default.
- W4313593652 cites W2896155461 @default.
- W4313593652 cites W2896196878 @default.
- W4313593652 cites W2990616006 @default.
- W4313593652 cites W3000675402 @default.
- W4313593652 cites W3008327514 @default.
- W4313593652 cites W3020429576 @default.
- W4313593652 cites W3026763995 @default.
- W4313593652 cites W3080326460 @default.
- W4313593652 cites W3098147746 @default.
- W4313593652 cites W3099920683 @default.
- W4313593652 cites W3102822594 @default.
- W4313593652 cites W3103876096 @default.
- W4313593652 cites W3114808287 @default.
- W4313593652 cites W3132705271 @default.
- W4313593652 cites W3164387584 @default.
- W4313593652 cites W3200159660 @default.
- W4313593652 cites W3208521902 @default.
- W4313593652 cites W4200541904 @default.
- W4313593652 cites W4210939709 @default.
- W4313593652 cites W4221155632 @default.
- W4313593652 cites W4285132446 @default.
- W4313593652 doi "https://doi.org/10.1016/j.ins.2022.12.072" @default.
- W4313593652 hasPublicationYear "2023" @default.
- W4313593652 type Work @default.
- W4313593652 citedByCount "2" @default.
- W4313593652 countsByYear W43135936522023 @default.
- W4313593652 crossrefType "journal-article" @default.
- W4313593652 hasAuthorship W4313593652A5000386870 @default.
- W4313593652 hasAuthorship W4313593652A5009705946 @default.
- W4313593652 hasAuthorship W4313593652A5031801059 @default.
- W4313593652 hasAuthorship W4313593652A5034388858 @default.
- W4313593652 hasAuthorship W4313593652A5068260072 @default.
- W4313593652 hasAuthorship W4313593652A5073063585 @default.
- W4313593652 hasAuthorship W4313593652A5073531557 @default.
- W4313593652 hasAuthorship W4313593652A5090815103 @default.
- W4313593652 hasConcept C117220453 @default.
- W4313593652 hasConcept C119857082 @default.
- W4313593652 hasConcept C124101348 @default.
- W4313593652 hasConcept C153180895 @default.
- W4313593652 hasConcept C154945302 @default.
- W4313593652 hasConcept C165696696 @default.
- W4313593652 hasConcept C170133592 @default.
- W4313593652 hasConcept C2524010 @default.
- W4313593652 hasConcept C2776135515 @default.
- W4313593652 hasConcept C2776482837 @default.
- W4313593652 hasConcept C33923547 @default.
- W4313593652 hasConcept C38652104 @default.
- W4313593652 hasConcept C41008148 @default.
- W4313593652 hasConcept C58973888 @default.
- W4313593652 hasConcept C70518039 @default.
- W4313593652 hasConcept C83665646 @default.
- W4313593652 hasConcept C95623464 @default.
- W4313593652 hasConceptScore W4313593652C117220453 @default.
- W4313593652 hasConceptScore W4313593652C119857082 @default.
- W4313593652 hasConceptScore W4313593652C124101348 @default.
- W4313593652 hasConceptScore W4313593652C153180895 @default.
- W4313593652 hasConceptScore W4313593652C154945302 @default.
- W4313593652 hasConceptScore W4313593652C165696696 @default.
- W4313593652 hasConceptScore W4313593652C170133592 @default.
- W4313593652 hasConceptScore W4313593652C2524010 @default.
- W4313593652 hasConceptScore W4313593652C2776135515 @default.
- W4313593652 hasConceptScore W4313593652C2776482837 @default.