Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593762> ?p ?o ?g. }
- W4313593762 endingPage "123736" @default.
- W4313593762 startingPage "123736" @default.
- W4313593762 abstract "In this paper, we propose and investigate a deep convolutional neural network-based surrogate model for fast prediction of heat transfer of nanofluid in absorbent tubes with fins. Inspired by Unet, the proposed model consists of a contracting path and an expanding path, and skip connections are replaced by residual blocks to enhance prediction performance. The model can predict temperature field of tubes’ specified cross-sections in any quantity. The nanofluid-filled absorbent tubes with two types of fins (rectangular and semiepllise) are investigated, where the shapes of the fins are variable. The results show that the proposed model can predict the temperature field with very high accuracy and extremely fast speed: the average prediction error is less than 0.15% for all studied cases, and the prediction speed is more than 4 orders faster than numerical simulation with OpenFOAM. In addition, we analyze the main factors affecting the network model, including the learning rate, data size, network's layer, activation function and input presentation. It is found that the influence of activation function is significant, where ReLU6 is able to reduce the max prediction error to 2.7%, while the Tanh and Sigmoid functions have two and four times larger errors, respectively. The results of our current work show great application potential of the deep neural network-based surrogate model for rapid 3D geometry optimization of the nanofluid-filled fined absorbent tube of heat exchangers and solar collectors." @default.
- W4313593762 created "2023-01-06" @default.
- W4313593762 creator A5012592535 @default.
- W4313593762 creator A5012870461 @default.
- W4313593762 creator A5063969891 @default.
- W4313593762 creator A5067657358 @default.
- W4313593762 creator A5071816807 @default.
- W4313593762 creator A5077878137 @default.
- W4313593762 date "2023-03-01" @default.
- W4313593762 modified "2023-10-02" @default.
- W4313593762 title "Surrogate modeling of heat transfers of nanofluids in absorbent tubes with fins based on deep convolutional neural network" @default.
- W4313593762 cites W2014211982 @default.
- W4313593762 cites W2031261072 @default.
- W4313593762 cites W2033457011 @default.
- W4313593762 cites W2063300091 @default.
- W4313593762 cites W2405287347 @default.
- W4313593762 cites W2492677301 @default.
- W4313593762 cites W2520557976 @default.
- W4313593762 cites W2535388113 @default.
- W4313593762 cites W2636164586 @default.
- W4313593762 cites W2752821898 @default.
- W4313593762 cites W2801184578 @default.
- W4313593762 cites W2801667400 @default.
- W4313593762 cites W2808829409 @default.
- W4313593762 cites W2884328405 @default.
- W4313593762 cites W2889821621 @default.
- W4313593762 cites W2890465787 @default.
- W4313593762 cites W2942192961 @default.
- W4313593762 cites W2966702713 @default.
- W4313593762 cites W3013946059 @default.
- W4313593762 cites W3014517597 @default.
- W4313593762 cites W3027688109 @default.
- W4313593762 cites W3082714464 @default.
- W4313593762 cites W3089757633 @default.
- W4313593762 cites W3109972557 @default.
- W4313593762 cites W3111914315 @default.
- W4313593762 cites W3117337440 @default.
- W4313593762 cites W3159776619 @default.
- W4313593762 cites W3182605434 @default.
- W4313593762 cites W3214501968 @default.
- W4313593762 cites W3216016867 @default.
- W4313593762 cites W4205727318 @default.
- W4313593762 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2022.123736" @default.
- W4313593762 hasPublicationYear "2023" @default.
- W4313593762 type Work @default.
- W4313593762 citedByCount "6" @default.
- W4313593762 countsByYear W43135937622023 @default.
- W4313593762 crossrefType "journal-article" @default.
- W4313593762 hasAuthorship W4313593762A5012592535 @default.
- W4313593762 hasAuthorship W4313593762A5012870461 @default.
- W4313593762 hasAuthorship W4313593762A5063969891 @default.
- W4313593762 hasAuthorship W4313593762A5067657358 @default.
- W4313593762 hasAuthorship W4313593762A5071816807 @default.
- W4313593762 hasAuthorship W4313593762A5077878137 @default.
- W4313593762 hasConcept C107706546 @default.
- W4313593762 hasConcept C11413529 @default.
- W4313593762 hasConcept C119857082 @default.
- W4313593762 hasConcept C121332964 @default.
- W4313593762 hasConcept C127413603 @default.
- W4313593762 hasConcept C131675550 @default.
- W4313593762 hasConcept C154945302 @default.
- W4313593762 hasConcept C155512373 @default.
- W4313593762 hasConcept C159985019 @default.
- W4313593762 hasConcept C18762648 @default.
- W4313593762 hasConcept C192562407 @default.
- W4313593762 hasConcept C199360897 @default.
- W4313593762 hasConcept C21946209 @default.
- W4313593762 hasConcept C2777551473 @default.
- W4313593762 hasConcept C2777735758 @default.
- W4313593762 hasConcept C41008148 @default.
- W4313593762 hasConcept C50517652 @default.
- W4313593762 hasConcept C50644808 @default.
- W4313593762 hasConcept C57879066 @default.
- W4313593762 hasConcept C78519656 @default.
- W4313593762 hasConcept C81363708 @default.
- W4313593762 hasConcept C81388566 @default.
- W4313593762 hasConceptScore W4313593762C107706546 @default.
- W4313593762 hasConceptScore W4313593762C11413529 @default.
- W4313593762 hasConceptScore W4313593762C119857082 @default.
- W4313593762 hasConceptScore W4313593762C121332964 @default.
- W4313593762 hasConceptScore W4313593762C127413603 @default.
- W4313593762 hasConceptScore W4313593762C131675550 @default.
- W4313593762 hasConceptScore W4313593762C154945302 @default.
- W4313593762 hasConceptScore W4313593762C155512373 @default.
- W4313593762 hasConceptScore W4313593762C159985019 @default.
- W4313593762 hasConceptScore W4313593762C18762648 @default.
- W4313593762 hasConceptScore W4313593762C192562407 @default.
- W4313593762 hasConceptScore W4313593762C199360897 @default.
- W4313593762 hasConceptScore W4313593762C21946209 @default.
- W4313593762 hasConceptScore W4313593762C2777551473 @default.
- W4313593762 hasConceptScore W4313593762C2777735758 @default.
- W4313593762 hasConceptScore W4313593762C41008148 @default.
- W4313593762 hasConceptScore W4313593762C50517652 @default.
- W4313593762 hasConceptScore W4313593762C50644808 @default.
- W4313593762 hasConceptScore W4313593762C57879066 @default.
- W4313593762 hasConceptScore W4313593762C78519656 @default.
- W4313593762 hasConceptScore W4313593762C81363708 @default.
- W4313593762 hasConceptScore W4313593762C81388566 @default.