Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593832> ?p ?o ?g. }
- W4313593832 endingPage "109084" @default.
- W4313593832 startingPage "109084" @default.
- W4313593832 abstract "Gas transmission stations (GTS) are significant infrastructure for cities and critical components of natural gas delivery, with severe consequences in the case of an accident. As a result, it necessitates the importance of potential risk discovery and accident precursor identification. However, existing models for risk analysis of GTS systems are too complex and only periodically update the risk of GTS, making it difficult to discover its potential risk in time. Some data used as input to the models are not from the system under consideration, leading to results inconsistent with the actual working conditions. This study proposes a structure mapping method based on failure modes and effects analysis (FMEA) to form the GTS's object-oriented Bayesian network (OOBN) framework, making the model more user-friendly. An accident precursor identification approach is proposed based on the piecewise aggregate approximation-cumulative sum (PAA-CUSUM) algorithm, which can better discover the potential risks in real-time. The proposed method identifies process anomalies through monitoring data and analyzes the events and propagation patterns with the highest potential risk. A case study of a GTS in China is conducted. The results demonstrate that the proposed method is beneficial for assisting station operators in identifying possible hazards and providing a foundation for daily risk mitigation." @default.
- W4313593832 created "2023-01-06" @default.
- W4313593832 creator A5029941351 @default.
- W4313593832 creator A5039839212 @default.
- W4313593832 creator A5040829616 @default.
- W4313593832 creator A5063268423 @default.
- W4313593832 creator A5087862970 @default.
- W4313593832 date "2023-04-01" @default.
- W4313593832 modified "2023-10-16" @default.
- W4313593832 title "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method" @default.
- W4313593832 cites W1992861063 @default.
- W4313593832 cites W1994867438 @default.
- W4313593832 cites W2013390383 @default.
- W4313593832 cites W2018571157 @default.
- W4313593832 cites W2050618921 @default.
- W4313593832 cites W2077210239 @default.
- W4313593832 cites W2094666619 @default.
- W4313593832 cites W2123765845 @default.
- W4313593832 cites W2126620319 @default.
- W4313593832 cites W2347027361 @default.
- W4313593832 cites W2514358450 @default.
- W4313593832 cites W2529702177 @default.
- W4313593832 cites W2584027124 @default.
- W4313593832 cites W2626227040 @default.
- W4313593832 cites W2736629890 @default.
- W4313593832 cites W2754637803 @default.
- W4313593832 cites W2770067051 @default.
- W4313593832 cites W2790850008 @default.
- W4313593832 cites W2811509783 @default.
- W4313593832 cites W2887296275 @default.
- W4313593832 cites W2898549143 @default.
- W4313593832 cites W2899259839 @default.
- W4313593832 cites W2911734693 @default.
- W4313593832 cites W2914418209 @default.
- W4313593832 cites W2921969890 @default.
- W4313593832 cites W2921977431 @default.
- W4313593832 cites W2922905449 @default.
- W4313593832 cites W2932512728 @default.
- W4313593832 cites W2933192800 @default.
- W4313593832 cites W2969414556 @default.
- W4313593832 cites W2971714384 @default.
- W4313593832 cites W2975685671 @default.
- W4313593832 cites W2983686748 @default.
- W4313593832 cites W3001038529 @default.
- W4313593832 cites W3015937655 @default.
- W4313593832 cites W3026737558 @default.
- W4313593832 cites W3107786033 @default.
- W4313593832 cites W3109554832 @default.
- W4313593832 cites W3117564001 @default.
- W4313593832 cites W3119241231 @default.
- W4313593832 cites W3156358291 @default.
- W4313593832 cites W3158060038 @default.
- W4313593832 cites W3158813433 @default.
- W4313593832 cites W3169211041 @default.
- W4313593832 cites W3171161766 @default.
- W4313593832 cites W3173524399 @default.
- W4313593832 cites W3198945029 @default.
- W4313593832 cites W3209015920 @default.
- W4313593832 cites W3212873782 @default.
- W4313593832 cites W4206794200 @default.
- W4313593832 cites W4211133719 @default.
- W4313593832 cites W4220989263 @default.
- W4313593832 cites W4221016640 @default.
- W4313593832 cites W4283769033 @default.
- W4313593832 doi "https://doi.org/10.1016/j.ress.2022.109084" @default.
- W4313593832 hasPublicationYear "2023" @default.
- W4313593832 type Work @default.
- W4313593832 citedByCount "3" @default.
- W4313593832 countsByYear W43135938322023 @default.
- W4313593832 crossrefType "journal-article" @default.
- W4313593832 hasAuthorship W4313593832A5029941351 @default.
- W4313593832 hasAuthorship W4313593832A5039839212 @default.
- W4313593832 hasAuthorship W4313593832A5040829616 @default.
- W4313593832 hasAuthorship W4313593832A5063268423 @default.
- W4313593832 hasAuthorship W4313593832A5087862970 @default.
- W4313593832 hasConcept C111919701 @default.
- W4313593832 hasConcept C112930515 @default.
- W4313593832 hasConcept C116834253 @default.
- W4313593832 hasConcept C119857082 @default.
- W4313593832 hasConcept C124101348 @default.
- W4313593832 hasConcept C127413603 @default.
- W4313593832 hasConcept C134306372 @default.
- W4313593832 hasConcept C164660894 @default.
- W4313593832 hasConcept C178518018 @default.
- W4313593832 hasConcept C200601418 @default.
- W4313593832 hasConcept C21547014 @default.
- W4313593832 hasConcept C33724603 @default.
- W4313593832 hasConcept C33923547 @default.
- W4313593832 hasConcept C41008148 @default.
- W4313593832 hasConcept C59822182 @default.
- W4313593832 hasConcept C71924100 @default.
- W4313593832 hasConcept C86803240 @default.
- W4313593832 hasConcept C98045186 @default.
- W4313593832 hasConceptScore W4313593832C111919701 @default.
- W4313593832 hasConceptScore W4313593832C112930515 @default.
- W4313593832 hasConceptScore W4313593832C116834253 @default.
- W4313593832 hasConceptScore W4313593832C119857082 @default.
- W4313593832 hasConceptScore W4313593832C124101348 @default.