Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593835> ?p ?o ?g. }
- W4313593835 endingPage "100184" @default.
- W4313593835 startingPage "100184" @default.
- W4313593835 abstract "The development of rapid and accurate Whole Slide Imaging (WSI) has paved the way for the application of Artificial Intelligence (AI) to digital pathology. The availability of WSI in the recent years allowed the rapid development of various AI technologies to blossom. WSI-based digital pathology combined with neural networks can automate arduous and time-consuming tasks of slide evaluation. Machine Learning (ML)-based AI has been demonstrated to outperform pathologists by eliminating inter- and intra-observer subjectivity, obtaining quantitative data from slide images, and extracting hidden image patterns that are relevant to disease subtype and progression. In this review, we outline the functionality of different AI technologies such as neural networks and deep learning and discover how aspects of different diseases make them benefit from the implementation of AI. AI has proven to be valuable in many different organs, with this review focusing on the liver, kidney, and lungs. We also discuss how AI and image analysis not only can grade diseases objectively but also discover aspects of diseases that have prognostic value. In the end, we review the current status of the integration of AI in pathology and share our vision on the future of digital pathology." @default.
- W4313593835 created "2023-01-06" @default.
- W4313593835 creator A5013876232 @default.
- W4313593835 creator A5068707563 @default.
- W4313593835 date "2023-01-01" @default.
- W4313593835 modified "2023-10-18" @default.
- W4313593835 title "Application of digital pathology and machine learning in the liver, kidney and lung diseases" @default.
- W4313593835 cites W1492453719 @default.
- W4313593835 cites W1964829819 @default.
- W4313593835 cites W1967685977 @default.
- W4313593835 cites W1972959096 @default.
- W4313593835 cites W1975389993 @default.
- W4313593835 cites W1981315889 @default.
- W4313593835 cites W1995148519 @default.
- W4313593835 cites W1995341919 @default.
- W4313593835 cites W2000771269 @default.
- W4313593835 cites W2013641403 @default.
- W4313593835 cites W2019580394 @default.
- W4313593835 cites W2019990432 @default.
- W4313593835 cites W2032819488 @default.
- W4313593835 cites W2042437331 @default.
- W4313593835 cites W2068081034 @default.
- W4313593835 cites W2097432501 @default.
- W4313593835 cites W2125665528 @default.
- W4313593835 cites W2157076315 @default.
- W4313593835 cites W2166581609 @default.
- W4313593835 cites W2167279371 @default.
- W4313593835 cites W2177887200 @default.
- W4313593835 cites W2286673285 @default.
- W4313593835 cites W2302302587 @default.
- W4313593835 cites W2332461223 @default.
- W4313593835 cites W2428647844 @default.
- W4313593835 cites W2470965540 @default.
- W4313593835 cites W2504150216 @default.
- W4313593835 cites W2514628397 @default.
- W4313593835 cites W2521963431 @default.
- W4313593835 cites W2581851997 @default.
- W4313593835 cites W2620578070 @default.
- W4313593835 cites W2742679468 @default.
- W4313593835 cites W2759004613 @default.
- W4313593835 cites W2760946358 @default.
- W4313593835 cites W2768243346 @default.
- W4313593835 cites W2770261599 @default.
- W4313593835 cites W2792120775 @default.
- W4313593835 cites W2794447976 @default.
- W4313593835 cites W2795387833 @default.
- W4313593835 cites W2796409016 @default.
- W4313593835 cites W2797608722 @default.
- W4313593835 cites W2797883441 @default.
- W4313593835 cites W2809254203 @default.
- W4313593835 cites W2891026923 @default.
- W4313593835 cites W2895630524 @default.
- W4313593835 cites W2897068067 @default.
- W4313593835 cites W2900654702 @default.
- W4313593835 cites W2904221050 @default.
- W4313593835 cites W2910050642 @default.
- W4313593835 cites W2911925130 @default.
- W4313593835 cites W2951934944 @default.
- W4313593835 cites W2953048903 @default.
- W4313593835 cites W2954719570 @default.
- W4313593835 cites W2956019261 @default.
- W4313593835 cites W2963652908 @default.
- W4313593835 cites W2963896025 @default.
- W4313593835 cites W2965481926 @default.
- W4313593835 cites W2967444033 @default.
- W4313593835 cites W2972013416 @default.
- W4313593835 cites W2977851495 @default.
- W4313593835 cites W2981841914 @default.
- W4313593835 cites W2989743390 @default.
- W4313593835 cites W2999468537 @default.
- W4313593835 cites W3007464329 @default.
- W4313593835 cites W3023087441 @default.
- W4313593835 cites W3035647551 @default.
- W4313593835 cites W3042325762 @default.
- W4313593835 cites W3106334361 @default.
- W4313593835 cites W3121368818 @default.
- W4313593835 cites W3128681643 @default.
- W4313593835 cites W3158898886 @default.
- W4313593835 cites W3161179063 @default.
- W4313593835 cites W4200431380 @default.
- W4313593835 cites W4205421084 @default.
- W4313593835 cites W4206982035 @default.
- W4313593835 cites W4214670085 @default.
- W4313593835 cites W4242460399 @default.
- W4313593835 cites W4282966980 @default.
- W4313593835 cites W4283757941 @default.
- W4313593835 cites W4283791928 @default.
- W4313593835 cites W4294989936 @default.
- W4313593835 cites W4296710226 @default.
- W4313593835 doi "https://doi.org/10.1016/j.jpi.2022.100184" @default.
- W4313593835 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36714454" @default.
- W4313593835 hasPublicationYear "2023" @default.
- W4313593835 type Work @default.
- W4313593835 citedByCount "3" @default.
- W4313593835 countsByYear W43135938352023 @default.
- W4313593835 crossrefType "journal-article" @default.
- W4313593835 hasAuthorship W4313593835A5013876232 @default.
- W4313593835 hasAuthorship W4313593835A5068707563 @default.