Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593847> ?p ?o ?g. }
- W4313593847 endingPage "128454" @default.
- W4313593847 startingPage "128454" @default.
- W4313593847 abstract "Kernel logistic regression (KLR) is a powerful machine learning model for classification, which has wide applications in pattern recognition. However, classical KLR algorithm is computationally expensive when dealing with big data sets. Since quantum technique exhibits a computational advantages in tackling machine learning problems, we devise a quantum KLR algorithm. Specifically, our algorithm makes use of quantum inner product estimation to prepare the desired state and then performs quantum singular value transformation based on the block-encoding framework to obtain the optimal model parameters. It is theoretically demonstrated that our algorithm has an exponential speedup over its classical counterpart." @default.
- W4313593847 created "2023-01-06" @default.
- W4313593847 creator A5000629167 @default.
- W4313593847 creator A5026115118 @default.
- W4313593847 creator A5038727912 @default.
- W4313593847 date "2023-02-01" @default.
- W4313593847 modified "2023-10-16" @default.
- W4313593847 title "Quantum kernel logistic regression based Newton method" @default.
- W4313593847 cites W1492999010 @default.
- W4313593847 cites W1981783889 @default.
- W4313593847 cites W1988369744 @default.
- W4313593847 cites W2084652510 @default.
- W4313593847 cites W2097174474 @default.
- W4313593847 cites W2100683382 @default.
- W4313593847 cites W2103956991 @default.
- W4313593847 cites W2111072639 @default.
- W4313593847 cites W2112059449 @default.
- W4313593847 cites W2121981260 @default.
- W4313593847 cites W2227200015 @default.
- W4313593847 cites W2287031979 @default.
- W4313593847 cites W2412592673 @default.
- W4313593847 cites W2415656260 @default.
- W4313593847 cites W2489886790 @default.
- W4313593847 cites W2495424399 @default.
- W4313593847 cites W2594860211 @default.
- W4313593847 cites W2607911764 @default.
- W4313593847 cites W2752255339 @default.
- W4313593847 cites W2765646145 @default.
- W4313593847 cites W2781738013 @default.
- W4313593847 cites W2804292523 @default.
- W4313593847 cites W2806391486 @default.
- W4313593847 cites W2898430977 @default.
- W4313593847 cites W2906136444 @default.
- W4313593847 cites W2943844484 @default.
- W4313593847 cites W2981621709 @default.
- W4313593847 cites W3040282388 @default.
- W4313593847 cites W3092021048 @default.
- W4313593847 cites W3101824094 @default.
- W4313593847 cites W3101872593 @default.
- W4313593847 cites W3104433882 @default.
- W4313593847 cites W3194037885 @default.
- W4313593847 cites W3203391851 @default.
- W4313593847 cites W4285602448 @default.
- W4313593847 cites W4295141396 @default.
- W4313593847 cites W4300862223 @default.
- W4313593847 doi "https://doi.org/10.1016/j.physa.2023.128454" @default.
- W4313593847 hasPublicationYear "2023" @default.
- W4313593847 type Work @default.
- W4313593847 citedByCount "0" @default.
- W4313593847 crossrefType "journal-article" @default.
- W4313593847 hasAuthorship W4313593847A5000629167 @default.
- W4313593847 hasAuthorship W4313593847A5026115118 @default.
- W4313593847 hasAuthorship W4313593847A5038727912 @default.
- W4313593847 hasConcept C104317684 @default.
- W4313593847 hasConcept C111919701 @default.
- W4313593847 hasConcept C11413529 @default.
- W4313593847 hasConcept C114614502 @default.
- W4313593847 hasConcept C119857082 @default.
- W4313593847 hasConcept C121332964 @default.
- W4313593847 hasConcept C122280245 @default.
- W4313593847 hasConcept C12267149 @default.
- W4313593847 hasConcept C126255220 @default.
- W4313593847 hasConcept C137019171 @default.
- W4313593847 hasConcept C151956035 @default.
- W4313593847 hasConcept C154945302 @default.
- W4313593847 hasConcept C185592680 @default.
- W4313593847 hasConcept C204241405 @default.
- W4313593847 hasConcept C22789450 @default.
- W4313593847 hasConcept C2524010 @default.
- W4313593847 hasConcept C2777210771 @default.
- W4313593847 hasConcept C2779094486 @default.
- W4313593847 hasConcept C28826006 @default.
- W4313593847 hasConcept C33923547 @default.
- W4313593847 hasConcept C41008148 @default.
- W4313593847 hasConcept C55493867 @default.
- W4313593847 hasConcept C62520636 @default.
- W4313593847 hasConcept C68339613 @default.
- W4313593847 hasConcept C74193536 @default.
- W4313593847 hasConcept C84114770 @default.
- W4313593847 hasConceptScore W4313593847C104317684 @default.
- W4313593847 hasConceptScore W4313593847C111919701 @default.
- W4313593847 hasConceptScore W4313593847C11413529 @default.
- W4313593847 hasConceptScore W4313593847C114614502 @default.
- W4313593847 hasConceptScore W4313593847C119857082 @default.
- W4313593847 hasConceptScore W4313593847C121332964 @default.
- W4313593847 hasConceptScore W4313593847C122280245 @default.
- W4313593847 hasConceptScore W4313593847C12267149 @default.
- W4313593847 hasConceptScore W4313593847C126255220 @default.
- W4313593847 hasConceptScore W4313593847C137019171 @default.
- W4313593847 hasConceptScore W4313593847C151956035 @default.
- W4313593847 hasConceptScore W4313593847C154945302 @default.
- W4313593847 hasConceptScore W4313593847C185592680 @default.
- W4313593847 hasConceptScore W4313593847C204241405 @default.
- W4313593847 hasConceptScore W4313593847C22789450 @default.
- W4313593847 hasConceptScore W4313593847C2524010 @default.
- W4313593847 hasConceptScore W4313593847C2777210771 @default.
- W4313593847 hasConceptScore W4313593847C2779094486 @default.
- W4313593847 hasConceptScore W4313593847C28826006 @default.