Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313593855> ?p ?o ?g. }
- W4313593855 endingPage "111858" @default.
- W4313593855 startingPage "111858" @default.
- W4313593855 abstract "Three asymptotic limits exist for the Euler equations at low Mach number - purely convective, purely acoustic, and mixed convective-acoustic. Standard collocated density-based numerical schemes for compressible flow are known to fail at low Mach number due to the incorrect asymptotic scaling of the artificial diffusion. Previous studies of this class of schemes have shown a variety of behaviours across the different limits and proposed guidelines for the design of low-Mach schemes. However, these studies have primarily focused on specific discretisations and/or only the convective limit. In this paper, we review the low-Mach behaviour using the modified equations - the continuous Euler equations augmented with artificial diffusion terms - which are representative of a wide range of schemes in this class. By considering both convective and acoustic effects, we show that three diffusion scalings naturally arise. Single- and multiple-scale asymptotic analysis of these scalings shows that many of the important low-Mach features of this class of schemes can be reproduced in a straightforward manner in the continuous setting. As an example, we show that many existing low-Mach Roe-type finite-volume schemes match one of these three scalings. Our analysis corroborates previous analysis of these schemes, and we are able to refine previous guidelines on the design of low-Mach schemes by including both convective and acoustic effects. Discrete analysis and numerical examples demonstrate the behaviour of minimal Roe-type schemes with each of the three scalings for convective, acoustic, and mixed flows." @default.
- W4313593855 created "2023-01-06" @default.
- W4313593855 creator A5005293007 @default.
- W4313593855 creator A5056406559 @default.
- W4313593855 date "2023-02-01" @default.
- W4313593855 modified "2023-09-26" @default.
- W4313593855 title "Artificial diffusion for convective and acoustic low Mach number flows I: Analysis of the modified equations, and application to Roe-type schemes" @default.
- W4313593855 cites W1655757813 @default.
- W4313593855 cites W1964813886 @default.
- W4313593855 cites W1965166105 @default.
- W4313593855 cites W1967720486 @default.
- W4313593855 cites W1977849798 @default.
- W4313593855 cites W1979564765 @default.
- W4313593855 cites W1981129530 @default.
- W4313593855 cites W1982999370 @default.
- W4313593855 cites W1984450680 @default.
- W4313593855 cites W1986608219 @default.
- W4313593855 cites W1988440139 @default.
- W4313593855 cites W1990616910 @default.
- W4313593855 cites W1990893845 @default.
- W4313593855 cites W1992696091 @default.
- W4313593855 cites W1996869687 @default.
- W4313593855 cites W2000596011 @default.
- W4313593855 cites W2005135197 @default.
- W4313593855 cites W2010258025 @default.
- W4313593855 cites W2010561301 @default.
- W4313593855 cites W2011422656 @default.
- W4313593855 cites W2012091179 @default.
- W4313593855 cites W2015777012 @default.
- W4313593855 cites W2020167389 @default.
- W4313593855 cites W2020367774 @default.
- W4313593855 cites W2020841229 @default.
- W4313593855 cites W2024916353 @default.
- W4313593855 cites W2027045411 @default.
- W4313593855 cites W2030366749 @default.
- W4313593855 cites W2031490769 @default.
- W4313593855 cites W2033160387 @default.
- W4313593855 cites W2035545087 @default.
- W4313593855 cites W2040489564 @default.
- W4313593855 cites W2048776317 @default.
- W4313593855 cites W2049326089 @default.
- W4313593855 cites W2061036343 @default.
- W4313593855 cites W2064370164 @default.
- W4313593855 cites W2064528642 @default.
- W4313593855 cites W2066009438 @default.
- W4313593855 cites W2070253710 @default.
- W4313593855 cites W2070912498 @default.
- W4313593855 cites W2077434098 @default.
- W4313593855 cites W2089642747 @default.
- W4313593855 cites W2091507441 @default.
- W4313593855 cites W2093210909 @default.
- W4313593855 cites W2105605926 @default.
- W4313593855 cites W2145594092 @default.
- W4313593855 cites W2148940696 @default.
- W4313593855 cites W2166036829 @default.
- W4313593855 cites W2276114895 @default.
- W4313593855 cites W2518937601 @default.
- W4313593855 cites W2613434172 @default.
- W4313593855 cites W2725859663 @default.
- W4313593855 cites W2760106908 @default.
- W4313593855 cites W2810850487 @default.
- W4313593855 cites W2901556773 @default.
- W4313593855 cites W2955179007 @default.
- W4313593855 cites W3091781255 @default.
- W4313593855 cites W3135508638 @default.
- W4313593855 cites W4245037559 @default.
- W4313593855 cites W4376596376 @default.
- W4313593855 cites W2085936083 @default.
- W4313593855 doi "https://doi.org/10.1016/j.jcp.2022.111858" @default.
- W4313593855 hasPublicationYear "2023" @default.
- W4313593855 type Work @default.
- W4313593855 citedByCount "2" @default.
- W4313593855 countsByYear W43135938552023 @default.
- W4313593855 crossrefType "journal-article" @default.
- W4313593855 hasAuthorship W4313593855A5005293007 @default.
- W4313593855 hasAuthorship W4313593855A5056406559 @default.
- W4313593855 hasBestOaLocation W43135938551 @default.
- W4313593855 hasConcept C10899652 @default.
- W4313593855 hasConcept C120796332 @default.
- W4313593855 hasConcept C121332964 @default.
- W4313593855 hasConcept C134306372 @default.
- W4313593855 hasConcept C148444096 @default.
- W4313593855 hasConcept C165231844 @default.
- W4313593855 hasConcept C171520575 @default.
- W4313593855 hasConcept C205147927 @default.
- W4313593855 hasConcept C2524010 @default.
- W4313593855 hasConcept C33923547 @default.
- W4313593855 hasConcept C38349280 @default.
- W4313593855 hasConcept C38409319 @default.
- W4313593855 hasConcept C50478463 @default.
- W4313593855 hasConcept C5192115 @default.
- W4313593855 hasConcept C57879066 @default.
- W4313593855 hasConcept C62884695 @default.
- W4313593855 hasConcept C69357855 @default.
- W4313593855 hasConcept C84655787 @default.
- W4313593855 hasConcept C97355855 @default.
- W4313593855 hasConcept C99844830 @default.
- W4313593855 hasConceptScore W4313593855C10899652 @default.