Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313594020> ?p ?o ?g. }
- W4313594020 endingPage "119493" @default.
- W4313594020 startingPage "119493" @default.
- W4313594020 abstract "Quantitative stock trading systems apply automated, data-driven models to invest in the stock markets. In the last two decades, the machine learning community has deeply explored the use of per-stock machine learning models to forecast next-day stocks’ directions and generate profitable trading signals. On the basis of the experience of discretionary traders, some promising attempts to enhance classifier performance by integrating the knowledge extracted from Japanese candlestick charts have been made. However, machine learning-based trading systems tend to generate an excessive number of false signals and do not necessarily consider the information provided by candlestick patterns in the appropriate manner. To alleviate these negative effects, this paper proposes to decouple the machine learning and pattern recognition steps so that the trading system can generate a reduced number of double-checked trading recommendations. Specifically, it proposes to selectively filter out the machine learning-based trading recommendations that are deemed as potentially unreliable according to the recognized graphical patterns. To this aim, it explores various alternatives to combine pattern recognition strategies with different machine learning models, including various shallow and deep supervised models and autoregressive techniques. The experiments, carried out on different market exchanges and under different conditions, demonstrate the effectiveness of the proposed approach in terms of return of investment and maximum drawdown of the trading system." @default.
- W4313594020 created "2023-01-06" @default.
- W4313594020 creator A5001746215 @default.
- W4313594020 creator A5017799591 @default.
- W4313594020 creator A5074057809 @default.
- W4313594020 date "2023-04-01" @default.
- W4313594020 modified "2023-09-23" @default.
- W4313594020 title "Shortlisting machine learning-based stock trading recommendations using candlestick pattern recognition" @default.
- W4313594020 cites W1531392112 @default.
- W4313594020 cites W1992870730 @default.
- W4313594020 cites W1999233885 @default.
- W4313594020 cites W2005346797 @default.
- W4313594020 cites W2018408827 @default.
- W4313594020 cites W2021664313 @default.
- W4313594020 cites W2024212714 @default.
- W4313594020 cites W2040846697 @default.
- W4313594020 cites W2045001586 @default.
- W4313594020 cites W2059410401 @default.
- W4313594020 cites W2068594958 @default.
- W4313594020 cites W2071825902 @default.
- W4313594020 cites W2074250525 @default.
- W4313594020 cites W2092885781 @default.
- W4313594020 cites W2094633847 @default.
- W4313594020 cites W2103359683 @default.
- W4313594020 cites W2137525015 @default.
- W4313594020 cites W2284153934 @default.
- W4313594020 cites W2335134956 @default.
- W4313594020 cites W2345563409 @default.
- W4313594020 cites W2587781392 @default.
- W4313594020 cites W2595933927 @default.
- W4313594020 cites W2619863308 @default.
- W4313594020 cites W2761569327 @default.
- W4313594020 cites W2762976654 @default.
- W4313594020 cites W2789399411 @default.
- W4313594020 cites W2794754466 @default.
- W4313594020 cites W2860018042 @default.
- W4313594020 cites W2994949492 @default.
- W4313594020 cites W3000503617 @default.
- W4313594020 cites W3009650506 @default.
- W4313594020 cites W3019427697 @default.
- W4313594020 cites W3042085654 @default.
- W4313594020 cites W3045170181 @default.
- W4313594020 cites W746481651 @default.
- W4313594020 doi "https://doi.org/10.1016/j.eswa.2022.119493" @default.
- W4313594020 hasPublicationYear "2023" @default.
- W4313594020 type Work @default.
- W4313594020 citedByCount "2" @default.
- W4313594020 countsByYear W43135940202023 @default.
- W4313594020 crossrefType "journal-article" @default.
- W4313594020 hasAuthorship W4313594020A5001746215 @default.
- W4313594020 hasAuthorship W4313594020A5017799591 @default.
- W4313594020 hasAuthorship W4313594020A5074057809 @default.
- W4313594020 hasConcept C10138342 @default.
- W4313594020 hasConcept C117245426 @default.
- W4313594020 hasConcept C119857082 @default.
- W4313594020 hasConcept C127413603 @default.
- W4313594020 hasConcept C131562839 @default.
- W4313594020 hasConcept C144133560 @default.
- W4313594020 hasConcept C151730666 @default.
- W4313594020 hasConcept C154945302 @default.
- W4313594020 hasConcept C204036174 @default.
- W4313594020 hasConcept C2780299701 @default.
- W4313594020 hasConcept C2780762169 @default.
- W4313594020 hasConcept C2989233474 @default.
- W4313594020 hasConcept C41008148 @default.
- W4313594020 hasConcept C78508483 @default.
- W4313594020 hasConcept C78519656 @default.
- W4313594020 hasConcept C86803240 @default.
- W4313594020 hasConcept C95623464 @default.
- W4313594020 hasConceptScore W4313594020C10138342 @default.
- W4313594020 hasConceptScore W4313594020C117245426 @default.
- W4313594020 hasConceptScore W4313594020C119857082 @default.
- W4313594020 hasConceptScore W4313594020C127413603 @default.
- W4313594020 hasConceptScore W4313594020C131562839 @default.
- W4313594020 hasConceptScore W4313594020C144133560 @default.
- W4313594020 hasConceptScore W4313594020C151730666 @default.
- W4313594020 hasConceptScore W4313594020C154945302 @default.
- W4313594020 hasConceptScore W4313594020C204036174 @default.
- W4313594020 hasConceptScore W4313594020C2780299701 @default.
- W4313594020 hasConceptScore W4313594020C2780762169 @default.
- W4313594020 hasConceptScore W4313594020C2989233474 @default.
- W4313594020 hasConceptScore W4313594020C41008148 @default.
- W4313594020 hasConceptScore W4313594020C78508483 @default.
- W4313594020 hasConceptScore W4313594020C78519656 @default.
- W4313594020 hasConceptScore W4313594020C86803240 @default.
- W4313594020 hasConceptScore W4313594020C95623464 @default.
- W4313594020 hasLocation W43135940201 @default.
- W4313594020 hasOpenAccess W4313594020 @default.
- W4313594020 hasPrimaryLocation W43135940201 @default.
- W4313594020 hasRelatedWork W2005233533 @default.
- W4313594020 hasRelatedWork W2140305729 @default.
- W4313594020 hasRelatedWork W2155646692 @default.
- W4313594020 hasRelatedWork W2329222577 @default.
- W4313594020 hasRelatedWork W2435386918 @default.
- W4313594020 hasRelatedWork W2593551545 @default.
- W4313594020 hasRelatedWork W3134571793 @default.
- W4313594020 hasRelatedWork W4206179698 @default.
- W4313594020 hasRelatedWork W880995879 @default.