Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313594094> ?p ?o ?g. }
- W4313594094 endingPage "103579" @default.
- W4313594094 startingPage "103579" @default.
- W4313594094 abstract "The connectivity and resource-constrained nature of single-board devices open the door to cybersecurity concerns affecting Internet of Things (IoT) scenarios. One of the most important issues is the presence of unauthorized IoT devices that want to impersonate legitimate ones by using identical hardware and software specifications. This situation can provoke sensitive information leakages, data poisoning, or privilege escalation in IoT scenarios. Combining behavioral fingerprinting and Machine/Deep Learning (ML/DL) techniques is a promising approach to identify these malicious spoofing devices by detecting minor performance differences generated by imperfections in manufacturing. However, existing solutions are not suitable for single-board devices since they do not consider their hardware and software limitations, underestimate critical aspects such as fingerprint stability or context changes, and do not explore the potential of ML/DL techniques. To improve it, this work first identifies the essential properties for single-board device identification: uniqueness, stability, diversity, scalability, efficiency, robustness, and security. Then, a novel methodology relies on behavioral fingerprinting to identify identical single-board devices and meet the previous properties. The methodology leverages the different built-in components of the system and ML/DL techniques, comparing the device internal behavior with each other to detect variations that occurred in manufacturing processes. The methodology validation has been performed in a real environment composed of 15 identical Raspberry Pi 4 Model B and 10 Raspberry Pi 3 Model B+ devices, obtaining a 91.9% average TPR with an XGBoost model and achieving the identification for all devices by setting a 50% threshold in the evaluation process. Finally, a discussion compares the proposed solution with related work, highlighting the fingerprint properties not met, and provides important lessons learned and limitations." @default.
- W4313594094 created "2023-01-06" @default.
- W4313594094 creator A5008356532 @default.
- W4313594094 creator A5033414840 @default.
- W4313594094 creator A5059796926 @default.
- W4313594094 creator A5063531116 @default.
- W4313594094 creator A5068451806 @default.
- W4313594094 creator A5070889566 @default.
- W4313594094 date "2023-03-01" @default.
- W4313594094 modified "2023-10-16" @default.
- W4313594094 title "A methodology to identify identical single-board computers based on hardware behavior fingerprinting" @default.
- W4313594094 cites W1978973474 @default.
- W4313594094 cites W2029594338 @default.
- W4313594094 cites W2048999575 @default.
- W4313594094 cites W2070074868 @default.
- W4313594094 cites W2104599106 @default.
- W4313594094 cites W2121473755 @default.
- W4313594094 cites W2142668586 @default.
- W4313594094 cites W2151043249 @default.
- W4313594094 cites W2525711947 @default.
- W4313594094 cites W2605049359 @default.
- W4313594094 cites W2801576564 @default.
- W4313594094 cites W2887792592 @default.
- W4313594094 cites W2889741439 @default.
- W4313594094 cites W2891512841 @default.
- W4313594094 cites W2891699316 @default.
- W4313594094 cites W2896083964 @default.
- W4313594094 cites W2907410281 @default.
- W4313594094 cites W2963331030 @default.
- W4313594094 cites W2982350200 @default.
- W4313594094 cites W2995121266 @default.
- W4313594094 cites W3009641258 @default.
- W4313594094 cites W3034289478 @default.
- W4313594094 cites W3039166530 @default.
- W4313594094 cites W3048094199 @default.
- W4313594094 cites W3048145331 @default.
- W4313594094 cites W3080382294 @default.
- W4313594094 cites W3103998378 @default.
- W4313594094 cites W3104141960 @default.
- W4313594094 cites W3128959222 @default.
- W4313594094 cites W4213287504 @default.
- W4313594094 cites W4286374021 @default.
- W4313594094 cites W4386470164 @default.
- W4313594094 doi "https://doi.org/10.1016/j.jnca.2022.103579" @default.
- W4313594094 hasPublicationYear "2023" @default.
- W4313594094 type Work @default.
- W4313594094 citedByCount "2" @default.
- W4313594094 countsByYear W43135940942023 @default.
- W4313594094 crossrefType "journal-article" @default.
- W4313594094 hasAuthorship W4313594094A5008356532 @default.
- W4313594094 hasAuthorship W4313594094A5033414840 @default.
- W4313594094 hasAuthorship W4313594094A5059796926 @default.
- W4313594094 hasAuthorship W4313594094A5063531116 @default.
- W4313594094 hasAuthorship W4313594094A5068451806 @default.
- W4313594094 hasAuthorship W4313594094A5070889566 @default.
- W4313594094 hasBestOaLocation W43135940941 @default.
- W4313594094 hasConcept C104317684 @default.
- W4313594094 hasConcept C111919701 @default.
- W4313594094 hasConcept C116834253 @default.
- W4313594094 hasConcept C149635348 @default.
- W4313594094 hasConcept C151730666 @default.
- W4313594094 hasConcept C154945302 @default.
- W4313594094 hasConcept C167900197 @default.
- W4313594094 hasConcept C185592680 @default.
- W4313594094 hasConcept C2777826928 @default.
- W4313594094 hasConcept C2777904410 @default.
- W4313594094 hasConcept C2779343474 @default.
- W4313594094 hasConcept C38652104 @default.
- W4313594094 hasConcept C41008148 @default.
- W4313594094 hasConcept C48044578 @default.
- W4313594094 hasConcept C55493867 @default.
- W4313594094 hasConcept C59822182 @default.
- W4313594094 hasConcept C63479239 @default.
- W4313594094 hasConcept C78639753 @default.
- W4313594094 hasConcept C86803240 @default.
- W4313594094 hasConcept C9390403 @default.
- W4313594094 hasConceptScore W4313594094C104317684 @default.
- W4313594094 hasConceptScore W4313594094C111919701 @default.
- W4313594094 hasConceptScore W4313594094C116834253 @default.
- W4313594094 hasConceptScore W4313594094C149635348 @default.
- W4313594094 hasConceptScore W4313594094C151730666 @default.
- W4313594094 hasConceptScore W4313594094C154945302 @default.
- W4313594094 hasConceptScore W4313594094C167900197 @default.
- W4313594094 hasConceptScore W4313594094C185592680 @default.
- W4313594094 hasConceptScore W4313594094C2777826928 @default.
- W4313594094 hasConceptScore W4313594094C2777904410 @default.
- W4313594094 hasConceptScore W4313594094C2779343474 @default.
- W4313594094 hasConceptScore W4313594094C38652104 @default.
- W4313594094 hasConceptScore W4313594094C41008148 @default.
- W4313594094 hasConceptScore W4313594094C48044578 @default.
- W4313594094 hasConceptScore W4313594094C55493867 @default.
- W4313594094 hasConceptScore W4313594094C59822182 @default.
- W4313594094 hasConceptScore W4313594094C63479239 @default.
- W4313594094 hasConceptScore W4313594094C78639753 @default.
- W4313594094 hasConceptScore W4313594094C86803240 @default.
- W4313594094 hasConceptScore W4313594094C9390403 @default.
- W4313594094 hasLocation W43135940941 @default.
- W4313594094 hasLocation W43135940942 @default.