Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313594499> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313594499 endingPage "103084" @default.
- W4313594499 startingPage "103084" @default.
- W4313594499 abstract "With the rapid increase in the number of malware, the detection and classification of malware have become more challenging. In recent years, many malware classification methods based on malware visualization and deep learning have been proposed. However, the malware images generated by these methods do not retain the semantic and statistical properties with a small and uniform size. This article gives definitions of extracted content and filling mode to characterize the critical factors for the malware visualization task and proposes a new malware visualization method based on assembly instructions and Markov transfer matrices to characterize malware. Thus, a malware classification method based on three-channel visualization and deep learning (MCTVD) is proposed. In MCTVD, its malware image has a small and uniform size, and its convolutional neural network has few convolutional and pooling layers. Experimental results show that MCTVD can achieve an accuracy of 99.44% on Microsoft’s public malware dataset under 10-fold cross-validation and thus could be a highly competitive candidate for malware classification." @default.
- W4313594499 created "2023-01-06" @default.
- W4313594499 creator A5011387476 @default.
- W4313594499 creator A5028071079 @default.
- W4313594499 creator A5084299004 @default.
- W4313594499 creator A5086384170 @default.
- W4313594499 creator A5089715871 @default.
- W4313594499 date "2023-03-01" @default.
- W4313594499 modified "2023-09-26" @default.
- W4313594499 title "MCTVD: A malware classification method based on three-channel visualization and deep learning" @default.
- W4313594499 cites W2574022511 @default.
- W4313594499 cites W2582361049 @default.
- W4313594499 cites W2790918693 @default.
- W4313594499 cites W2796394805 @default.
- W4313594499 cites W2800912855 @default.
- W4313594499 cites W2801888526 @default.
- W4313594499 cites W2885747980 @default.
- W4313594499 cites W2889100747 @default.
- W4313594499 cites W2905130735 @default.
- W4313594499 cites W2913292019 @default.
- W4313594499 cites W2995090412 @default.
- W4313594499 cites W2996806689 @default.
- W4313594499 cites W3004280948 @default.
- W4313594499 cites W3004650773 @default.
- W4313594499 cites W3006140559 @default.
- W4313594499 cites W3011213835 @default.
- W4313594499 cites W3045044533 @default.
- W4313594499 cites W3084074310 @default.
- W4313594499 cites W3135185324 @default.
- W4313594499 cites W3135353552 @default.
- W4313594499 cites W3186605584 @default.
- W4313594499 cites W3186874092 @default.
- W4313594499 cites W3187790458 @default.
- W4313594499 cites W3205886849 @default.
- W4313594499 cites W4200469653 @default.
- W4313594499 cites W4213055350 @default.
- W4313594499 cites W4292820477 @default.
- W4313594499 doi "https://doi.org/10.1016/j.cose.2022.103084" @default.
- W4313594499 hasPublicationYear "2023" @default.
- W4313594499 type Work @default.
- W4313594499 citedByCount "2" @default.
- W4313594499 countsByYear W43135944992023 @default.
- W4313594499 crossrefType "journal-article" @default.
- W4313594499 hasAuthorship W4313594499A5011387476 @default.
- W4313594499 hasAuthorship W4313594499A5028071079 @default.
- W4313594499 hasAuthorship W4313594499A5084299004 @default.
- W4313594499 hasAuthorship W4313594499A5086384170 @default.
- W4313594499 hasAuthorship W4313594499A5089715871 @default.
- W4313594499 hasConcept C108583219 @default.
- W4313594499 hasConcept C119857082 @default.
- W4313594499 hasConcept C124101348 @default.
- W4313594499 hasConcept C14669888 @default.
- W4313594499 hasConcept C153180895 @default.
- W4313594499 hasConcept C154945302 @default.
- W4313594499 hasConcept C2779395397 @default.
- W4313594499 hasConcept C36464697 @default.
- W4313594499 hasConcept C38652104 @default.
- W4313594499 hasConcept C41008148 @default.
- W4313594499 hasConcept C541664917 @default.
- W4313594499 hasConcept C70437156 @default.
- W4313594499 hasConcept C81363708 @default.
- W4313594499 hasConceptScore W4313594499C108583219 @default.
- W4313594499 hasConceptScore W4313594499C119857082 @default.
- W4313594499 hasConceptScore W4313594499C124101348 @default.
- W4313594499 hasConceptScore W4313594499C14669888 @default.
- W4313594499 hasConceptScore W4313594499C153180895 @default.
- W4313594499 hasConceptScore W4313594499C154945302 @default.
- W4313594499 hasConceptScore W4313594499C2779395397 @default.
- W4313594499 hasConceptScore W4313594499C36464697 @default.
- W4313594499 hasConceptScore W4313594499C38652104 @default.
- W4313594499 hasConceptScore W4313594499C41008148 @default.
- W4313594499 hasConceptScore W4313594499C541664917 @default.
- W4313594499 hasConceptScore W4313594499C70437156 @default.
- W4313594499 hasConceptScore W4313594499C81363708 @default.
- W4313594499 hasLocation W43135944991 @default.
- W4313594499 hasOpenAccess W4313594499 @default.
- W4313594499 hasPrimaryLocation W43135944991 @default.
- W4313594499 hasRelatedWork W2043263066 @default.
- W4313594499 hasRelatedWork W2048308859 @default.
- W4313594499 hasRelatedWork W2216444195 @default.
- W4313594499 hasRelatedWork W2517027266 @default.
- W4313594499 hasRelatedWork W2893833200 @default.
- W4313594499 hasRelatedWork W2968586400 @default.
- W4313594499 hasRelatedWork W3033139190 @default.
- W4313594499 hasRelatedWork W4312417841 @default.
- W4313594499 hasRelatedWork W4313563103 @default.
- W4313594499 hasRelatedWork W4321369474 @default.
- W4313594499 hasVolume "126" @default.
- W4313594499 isParatext "false" @default.
- W4313594499 isRetracted "false" @default.
- W4313594499 workType "article" @default.