Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313594510> ?p ?o ?g. }
- W4313594510 endingPage "104555" @default.
- W4313594510 startingPage "104555" @default.
- W4313594510 abstract "The World Health Organization (WHO) establishes as a top priority the early detection of respiratory diseases. This detection could be performed by means of recognizing the presence of acoustic bio-markers (adventitious sounds) from auscultation because it is still the main technique applied in any health center to assess the status of the respiratory system due to its non-invasive, low-cost, easy to apply, fast to diagnose and safe nature. Despite the novel deep learning approaches applied in this biomedical field, there is a notable lack of research that rigorously focuses on different time–frequency representations to determine the most suitable transformation to feed data into Convolutional Neural Network (CNN) architectures. In this paper, we propose the use of the cochleogram, based on modeling the frequency selectivity of the human cochlea, as an improved time–frequency representation to optimize the learning process of a CNN model in the classification of respiratory adventitious sounds. Our proposal is evaluated using the largest and most challenging public database of respiratory sounds. The cochleogram obtains the best binary classification results among the compared methods with an average accuracy of 85.1% in wheezes and 73.8% in crackles, and a competitive performance evaluating a multiclass classification scenario in comparison with other well-known state-of-the-art deep learning models. The cochleogram provides a suitable time–frequency representation since it is able to model respiratory adventitious content more accurately by means of non-uniform spectral resolution and due to its increased robustness to noise and acoustic changes. This fact implies a significant improvement in the learning process of CNN models applied in the classification of respiratory adventitious sounds." @default.
- W4313594510 created "2023-01-06" @default.
- W4313594510 creator A5023349682 @default.
- W4313594510 creator A5024165230 @default.
- W4313594510 creator A5031959992 @default.
- W4313594510 creator A5032175902 @default.
- W4313594510 creator A5037019197 @default.
- W4313594510 date "2023-04-01" @default.
- W4313594510 modified "2023-10-18" @default.
- W4313594510 title "Cochleogram-based adventitious sounds classification using convolutional neural networks" @default.
- W4313594510 cites W1168254338 @default.
- W4313594510 cites W1658835325 @default.
- W4313594510 cites W1971480268 @default.
- W4313594510 cites W1972978214 @default.
- W4313594510 cites W1978274651 @default.
- W4313594510 cites W2017608047 @default.
- W4313594510 cites W2022137338 @default.
- W4313594510 cites W2028709512 @default.
- W4313594510 cites W2047469300 @default.
- W4313594510 cites W2071797156 @default.
- W4313594510 cites W2078442210 @default.
- W4313594510 cites W2082022689 @default.
- W4313594510 cites W2090211080 @default.
- W4313594510 cites W2093867321 @default.
- W4313594510 cites W2103353836 @default.
- W4313594510 cites W2112717719 @default.
- W4313594510 cites W2124954038 @default.
- W4313594510 cites W2148154194 @default.
- W4313594510 cites W2168312801 @default.
- W4313594510 cites W2209509924 @default.
- W4313594510 cites W2295562464 @default.
- W4313594510 cites W2546875389 @default.
- W4313594510 cites W2563162320 @default.
- W4313594510 cites W2619772334 @default.
- W4313594510 cites W2748902594 @default.
- W4313594510 cites W2754136846 @default.
- W4313594510 cites W2775349186 @default.
- W4313594510 cites W2801920224 @default.
- W4313594510 cites W2807793257 @default.
- W4313594510 cites W2883568384 @default.
- W4313594510 cites W2900286562 @default.
- W4313594510 cites W2905548332 @default.
- W4313594510 cites W2907571622 @default.
- W4313594510 cites W2912223386 @default.
- W4313594510 cites W2931364255 @default.
- W4313594510 cites W2972832574 @default.
- W4313594510 cites W2996890481 @default.
- W4313594510 cites W2997700007 @default.
- W4313594510 cites W2999653953 @default.
- W4313594510 cites W3002644008 @default.
- W4313594510 cites W3018163601 @default.
- W4313594510 cites W3022413454 @default.
- W4313594510 cites W3027928993 @default.
- W4313594510 cites W3034052356 @default.
- W4313594510 cites W3084881902 @default.
- W4313594510 cites W3087468906 @default.
- W4313594510 cites W3115941641 @default.
- W4313594510 cites W3116715673 @default.
- W4313594510 cites W3128301555 @default.
- W4313594510 cites W3129929175 @default.
- W4313594510 cites W3132109775 @default.
- W4313594510 cites W3188992532 @default.
- W4313594510 cites W3214429548 @default.
- W4313594510 cites W4210428539 @default.
- W4313594510 cites W4213086326 @default.
- W4313594510 cites W4225915947 @default.
- W4313594510 cites W4290852063 @default.
- W4313594510 doi "https://doi.org/10.1016/j.bspc.2022.104555" @default.
- W4313594510 hasPublicationYear "2023" @default.
- W4313594510 type Work @default.
- W4313594510 citedByCount "6" @default.
- W4313594510 countsByYear W43135945102023 @default.
- W4313594510 crossrefType "journal-article" @default.
- W4313594510 hasAuthorship W4313594510A5023349682 @default.
- W4313594510 hasAuthorship W4313594510A5024165230 @default.
- W4313594510 hasAuthorship W4313594510A5031959992 @default.
- W4313594510 hasAuthorship W4313594510A5032175902 @default.
- W4313594510 hasAuthorship W4313594510A5037019197 @default.
- W4313594510 hasBestOaLocation W43135945101 @default.
- W4313594510 hasConcept C104317684 @default.
- W4313594510 hasConcept C108583219 @default.
- W4313594510 hasConcept C115961682 @default.
- W4313594510 hasConcept C119857082 @default.
- W4313594510 hasConcept C12267149 @default.
- W4313594510 hasConcept C126322002 @default.
- W4313594510 hasConcept C126838900 @default.
- W4313594510 hasConcept C150899416 @default.
- W4313594510 hasConcept C153180895 @default.
- W4313594510 hasConcept C154945302 @default.
- W4313594510 hasConcept C185592680 @default.
- W4313594510 hasConcept C2776042228 @default.
- W4313594510 hasConcept C2777324038 @default.
- W4313594510 hasConcept C2777402568 @default.
- W4313594510 hasConcept C2777714996 @default.
- W4313594510 hasConcept C2780908675 @default.
- W4313594510 hasConcept C28490314 @default.
- W4313594510 hasConcept C41008148 @default.
- W4313594510 hasConcept C55493867 @default.