Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313594759> ?p ?o ?g. }
- W4313594759 endingPage "104826" @default.
- W4313594759 startingPage "104826" @default.
- W4313594759 abstract "Biological systems such as mammalian cell cycle are complex systems consisting of a large number of molecular species interacting in ways that produce complex nonlinear systems dynamics. Discrete models such as Boolean models and continuous models such as Ordinary Differential Equations (ODEs) have been widely used to study these systems. Boolean models are simple and can capture qualitative systems behaviour, but they cannot capture the continuous trends of protein concentrations, while ODE models capture continuous trends but require kinetics parameters that are limited. Further, as systems get larger, complexity of these models becomes an issue for parameterization, analysis and interpretation. Also, molecular systems operate under the conditions of uncertainty and noise and our understanding of molecular processes in general is more at a qualitative level characterised by vagueness, imprecision and ambiguity. Hence, as more data are generated, there is a greater need for simpler data driven methods that can approximate continuous system behaviour while representing vagueness and ambiguity without requiring kinetic parameters. Fuzzy inferencing is one such promising method with the ability to work with qualitative vague/imprecise biological knowledge. In this study, we propose a fuzzy inference system for representing continuous behaviour of proteins and apply to some key proteins in the mammalian cell cycle system. The methods we introduced here is novel to protein interaction systems and cell cycle proteins. Our study proposes a three-stage approach to develop fuzzy protein controllers. In stage one, protein system is studied for interactions. We studied some significant core controllers of mammalian cell cycle and their producers and degraders as presented in a published ODE model. Based on the observations from a dataset generated from it, we developed Fuzzy inference systems (FIS) in the second stage, that involved deriving fuzzy IF-THEN rules and their processing, and manually tuned the FIS to predict the dynamics of individual proteins. In stage three, we employed Particle Swarm Optimisation (PSO) for optimising the FIS to further enhance prediction accuracy. Systems dynamics simulation results of the optimised FIS models were in close agreement with the benchmark ODE model results. The results show that the FIS models provide a close approximation to the comprehensive benchmark model in robustly representing continuous protein dynamics while representing the control of protein behavior in an intuitive and transparent format without requiring kinetic parameters. Therefore, FIS models can be an alternative to ODEs in network modelling. Further, FIS models can be assembled to develop large complex systems without losing information or accuracy." @default.
- W4313594759 created "2023-01-06" @default.
- W4313594759 creator A5035880316 @default.
- W4313594759 creator A5044216588 @default.
- W4313594759 creator A5091682385 @default.
- W4313594759 date "2023-02-01" @default.
- W4313594759 modified "2023-09-25" @default.
- W4313594759 title "Proteins as fuzzy controllers: Auto tuning a biological fuzzy inference system to predict protein dynamics in complex biological networks" @default.
- W4313594759 cites W1893505266 @default.
- W4313594759 cites W1968357038 @default.
- W4313594759 cites W1976991065 @default.
- W4313594759 cites W1989329927 @default.
- W4313594759 cites W1990736894 @default.
- W4313594759 cites W1991216151 @default.
- W4313594759 cites W1995405908 @default.
- W4313594759 cites W2009218806 @default.
- W4313594759 cites W2010683612 @default.
- W4313594759 cites W2017218687 @default.
- W4313594759 cites W2018519939 @default.
- W4313594759 cites W2019207321 @default.
- W4313594759 cites W2034682809 @default.
- W4313594759 cites W2044935813 @default.
- W4313594759 cites W2046024621 @default.
- W4313594759 cites W2046855815 @default.
- W4313594759 cites W2049982841 @default.
- W4313594759 cites W2050587558 @default.
- W4313594759 cites W2066489051 @default.
- W4313594759 cites W2073203054 @default.
- W4313594759 cites W2075161553 @default.
- W4313594759 cites W2080686134 @default.
- W4313594759 cites W2087025655 @default.
- W4313594759 cites W2104039751 @default.
- W4313594759 cites W2131403178 @default.
- W4313594759 cites W2132935366 @default.
- W4313594759 cites W2136977672 @default.
- W4313594759 cites W2138366746 @default.
- W4313594759 cites W2161485260 @default.
- W4313594759 cites W2169245194 @default.
- W4313594759 cites W2232644857 @default.
- W4313594759 cites W2305205647 @default.
- W4313594759 cites W2479170089 @default.
- W4313594759 cites W2580683667 @default.
- W4313594759 cites W2611370172 @default.
- W4313594759 cites W2632526567 @default.
- W4313594759 cites W2731805355 @default.
- W4313594759 cites W2970280405 @default.
- W4313594759 cites W4211007335 @default.
- W4313594759 cites W67049623 @default.
- W4313594759 doi "https://doi.org/10.1016/j.biosystems.2023.104826" @default.
- W4313594759 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36610587" @default.
- W4313594759 hasPublicationYear "2023" @default.
- W4313594759 type Work @default.
- W4313594759 citedByCount "0" @default.
- W4313594759 crossrefType "journal-article" @default.
- W4313594759 hasAuthorship W4313594759A5035880316 @default.
- W4313594759 hasAuthorship W4313594759A5044216588 @default.
- W4313594759 hasAuthorship W4313594759A5091682385 @default.
- W4313594759 hasConcept C134306372 @default.
- W4313594759 hasConcept C154945302 @default.
- W4313594759 hasConcept C186060115 @default.
- W4313594759 hasConcept C195975749 @default.
- W4313594759 hasConcept C199360897 @default.
- W4313594759 hasConcept C2776214188 @default.
- W4313594759 hasConcept C2776825360 @default.
- W4313594759 hasConcept C2780522230 @default.
- W4313594759 hasConcept C28826006 @default.
- W4313594759 hasConcept C33923547 @default.
- W4313594759 hasConcept C34862557 @default.
- W4313594759 hasConcept C41008148 @default.
- W4313594759 hasConcept C47822265 @default.
- W4313594759 hasConcept C51544822 @default.
- W4313594759 hasConcept C58166 @default.
- W4313594759 hasConcept C77405623 @default.
- W4313594759 hasConcept C78045399 @default.
- W4313594759 hasConcept C86803240 @default.
- W4313594759 hasConceptScore W4313594759C134306372 @default.
- W4313594759 hasConceptScore W4313594759C154945302 @default.
- W4313594759 hasConceptScore W4313594759C186060115 @default.
- W4313594759 hasConceptScore W4313594759C195975749 @default.
- W4313594759 hasConceptScore W4313594759C199360897 @default.
- W4313594759 hasConceptScore W4313594759C2776214188 @default.
- W4313594759 hasConceptScore W4313594759C2776825360 @default.
- W4313594759 hasConceptScore W4313594759C2780522230 @default.
- W4313594759 hasConceptScore W4313594759C28826006 @default.
- W4313594759 hasConceptScore W4313594759C33923547 @default.
- W4313594759 hasConceptScore W4313594759C34862557 @default.
- W4313594759 hasConceptScore W4313594759C41008148 @default.
- W4313594759 hasConceptScore W4313594759C47822265 @default.
- W4313594759 hasConceptScore W4313594759C51544822 @default.
- W4313594759 hasConceptScore W4313594759C58166 @default.
- W4313594759 hasConceptScore W4313594759C77405623 @default.
- W4313594759 hasConceptScore W4313594759C78045399 @default.
- W4313594759 hasConceptScore W4313594759C86803240 @default.
- W4313594759 hasLocation W43135947591 @default.
- W4313594759 hasLocation W43135947592 @default.
- W4313594759 hasOpenAccess W4313594759 @default.
- W4313594759 hasPrimaryLocation W43135947591 @default.
- W4313594759 hasRelatedWork W1618287882 @default.