Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313594913> ?p ?o ?g. }
- W4313594913 endingPage "120601" @default.
- W4313594913 startingPage "120601" @default.
- W4313594913 abstract "Wind speed forecasting plays an important role in the stable operation of wind energy power systems. However, accurate and reliable wind speed forecasting faces four challenges: how to reduce the data noise; how to find the optimal model inputs; how to describe the complex fluctuations in wind speed; and how to design a suitable loss function to tune the forecasting model. This study proposes a novel forecasting model to address the four challenges mentioned above. First, it uses a wavelet soft threshold denoising method to reduce noise in the original wind speed time series. Second, it uses the maximal information coefficient, which measures the linear and nonlinear relationships between historical wind speed data and forecasted targets, to determine the optimal model inputs. Third, a novel convolutional Transformer-based truncated Gaussian density network is designed to characterize the complex fluctuations in wind speed. The multi-scale information from different convolutional layers is weighted using the self-attention mechanism and then fed into the Transformer network to extract temporal information. The outputs are mapped into the forecasted targets with several fully connected layers. Fourth, considering the non-negativity of wind speed, the truncated Gaussian distribution, which shows a probability of zero when the wind speed is less than zero, is employed to model the uncertainty of wind speed forecasts. This leads to designing a truncated Gaussian distribution-based loss function to train the forecasting model. The forecasting results on three real-world datasets show that the proposed model not only provides accurate deterministic wind speed forecasts but also produces reliable probabilistic wind speed forecasts. The hypothesis testing also illustrates the effectiveness of the proposed model for deterministic and probabilistic wind speed forecasting." @default.
- W4313594913 created "2023-01-06" @default.
- W4313594913 creator A5018664408 @default.
- W4313594913 creator A5019991858 @default.
- W4313594913 creator A5028348483 @default.
- W4313594913 creator A5029979080 @default.
- W4313594913 creator A5037015805 @default.
- W4313594913 creator A5053447705 @default.
- W4313594913 creator A5063517524 @default.
- W4313594913 date "2023-03-01" @default.
- W4313594913 modified "2023-10-01" @default.
- W4313594913 title "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting" @default.
- W4313594913 cites W1553802819 @default.
- W4313594913 cites W1966091644 @default.
- W4313594913 cites W1984061847 @default.
- W4313594913 cites W1993261349 @default.
- W4313594913 cites W1995140642 @default.
- W4313594913 cites W2016944307 @default.
- W4313594913 cites W2033787086 @default.
- W4313594913 cites W2034544282 @default.
- W4313594913 cites W2058504886 @default.
- W4313594913 cites W2074715647 @default.
- W4313594913 cites W2086284119 @default.
- W4313594913 cites W2089268064 @default.
- W4313594913 cites W2132477882 @default.
- W4313594913 cites W2136658108 @default.
- W4313594913 cites W2147526029 @default.
- W4313594913 cites W2165700458 @default.
- W4313594913 cites W2171666055 @default.
- W4313594913 cites W2392689491 @default.
- W4313594913 cites W2401688955 @default.
- W4313594913 cites W2468900667 @default.
- W4313594913 cites W2511683089 @default.
- W4313594913 cites W2546170829 @default.
- W4313594913 cites W2563961440 @default.
- W4313594913 cites W2618615629 @default.
- W4313594913 cites W2622052728 @default.
- W4313594913 cites W2762869206 @default.
- W4313594913 cites W2770058012 @default.
- W4313594913 cites W2774342469 @default.
- W4313594913 cites W2775807939 @default.
- W4313594913 cites W2790834859 @default.
- W4313594913 cites W2793121129 @default.
- W4313594913 cites W2794466895 @default.
- W4313594913 cites W2799827709 @default.
- W4313594913 cites W2800437387 @default.
- W4313594913 cites W2899494475 @default.
- W4313594913 cites W2901964425 @default.
- W4313594913 cites W2909474405 @default.
- W4313594913 cites W2910279921 @default.
- W4313594913 cites W2922282168 @default.
- W4313594913 cites W2942406509 @default.
- W4313594913 cites W2943991646 @default.
- W4313594913 cites W2944487131 @default.
- W4313594913 cites W2954586649 @default.
- W4313594913 cites W2955529518 @default.
- W4313594913 cites W2969358077 @default.
- W4313594913 cites W2993128518 @default.
- W4313594913 cites W2998188743 @default.
- W4313594913 cites W3012477722 @default.
- W4313594913 cites W3013362873 @default.
- W4313594913 cites W3019251610 @default.
- W4313594913 cites W3020339386 @default.
- W4313594913 cites W3020882770 @default.
- W4313594913 cites W3020899803 @default.
- W4313594913 cites W3021138452 @default.
- W4313594913 cites W3081014946 @default.
- W4313594913 cites W3090528971 @default.
- W4313594913 cites W3092607577 @default.
- W4313594913 cites W3093663925 @default.
- W4313594913 cites W3093877613 @default.
- W4313594913 cites W3100044956 @default.
- W4313594913 cites W3106326231 @default.
- W4313594913 cites W3106815347 @default.
- W4313594913 cites W3107942868 @default.
- W4313594913 cites W3117453207 @default.
- W4313594913 cites W3139477889 @default.
- W4313594913 cites W3150017935 @default.
- W4313594913 cites W3179483397 @default.
- W4313594913 cites W3200304500 @default.
- W4313594913 cites W3209740120 @default.
- W4313594913 cites W4200027827 @default.
- W4313594913 cites W4200079377 @default.
- W4313594913 cites W4200372662 @default.
- W4313594913 cites W4214883657 @default.
- W4313594913 cites W4214944984 @default.
- W4313594913 cites W4220801201 @default.
- W4313594913 cites W4224211827 @default.
- W4313594913 cites W4229052190 @default.
- W4313594913 doi "https://doi.org/10.1016/j.apenergy.2022.120601" @default.
- W4313594913 hasPublicationYear "2023" @default.
- W4313594913 type Work @default.
- W4313594913 citedByCount "5" @default.
- W4313594913 countsByYear W43135949132023 @default.
- W4313594913 crossrefType "journal-article" @default.
- W4313594913 hasAuthorship W4313594913A5018664408 @default.
- W4313594913 hasAuthorship W4313594913A5019991858 @default.
- W4313594913 hasAuthorship W4313594913A5028348483 @default.