Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313596481> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313596481 endingPage "100154" @default.
- W4313596481 startingPage "100154" @default.
- W4313596481 abstract "The current approach to endometrial cancer screening requires that all patients be able to recognize symptoms, report them, and carry out appropriate interventions. The current approach to endometrial cancer screening could become a problem in the future, especially for Black women and women from minority groups, and could lead to disparities in receiving proper care. Moreover, there is a lack of literature on artificial intelligence in the prediction and diagnosis of endometrial intraepithelial neoplasia and endometrial cancer.This study analyzed different artificial intelligence methods to help in clinical decision-making and the prediction of endometrial intraepithelial neoplasia and endometrial cancer risks in pre- and postmenopausal women. This study aimed to investigate whether artificial intelligence may help to overcome the challenges that statistical and diagnostic tests could not.This study included 564 patients. The features that were collected included age, menopause status, premenopausal abnormal bleeding and postmenopausal bleeding, obesity, hypertension, diabetes mellitus, smoking, endometrial thickness, and history of breast cancer. Endometrial sampling was performed on all women with postmenopausal bleeding and asymptomatic postmenopausal women with an endometrial thickness of at least 3 mm. Endometrial biopsy was performed on premenopausal women with abnormal uterine bleeding and asymptomatic premenopausal women with suspected endometrial lesions. Python was used to model machine learning algorithms. Random forest, logistic regression, multilayer perceptron, Catboost, Xgboost, and Naive Bayes methods were used for classification. The synthetic minority oversampling technique was used to correct the class imbalance in the training sets. In addition, tuning and boosting were used to increase the performance of the models with a 5-fold cross-validation approach using a training set. Accuracy, sensitivity, specificity, positive predictive value, and F1 score were calculated.The prevalence of endometrial or preuterine cancer was 7.9%. Data from 451 patients were randomly assigned to the training group, and data from another 113 patients were used for internal validation. Of note, 3 of 9 features were selected by the Boruta algorithm for use in the final modeling. Age, body mass index, and endometrial thickness were all associated with a high risk of developing precancerous and cancerous diseases, after fine-tuning for the multilayer computer to have the highest area below the receiver operating characteristic curve (area under the curve, 0.938) to predict a precancerous disease. The accuracy was 0.94 for predicting a precancerous disease. Precision, recall, and F1 scores for the test group were 0.71, 0.50, and 0.59, respectively.Our study found that artificial intelligence can be used to identify women at risk of endometrial intraepithelial neoplasia and endometrial cancer. The model is not contingent on menopausal status or symptoms. This may be an advantage over the traditional methodology because many women, especially Black women and women from minority groups, could not recognize them. We have proposed to include patients to provide age and body mass index, and measurement of endometrial thickness by either sonography or artificial intelligence may help improve healthcare for women in rural or minority communities." @default.
- W4313596481 created "2023-01-06" @default.
- W4313596481 creator A5006808546 @default.
- W4313596481 creator A5045967614 @default.
- W4313596481 creator A5047777701 @default.
- W4313596481 creator A5053394383 @default.
- W4313596481 creator A5067168262 @default.
- W4313596481 creator A5067849349 @default.
- W4313596481 creator A5080537887 @default.
- W4313596481 date "2023-02-01" @default.
- W4313596481 modified "2023-10-05" @default.
- W4313596481 title "Artificial intelligence for prediction of endometrial intraepithelial neoplasia and endometrial cancer risks in pre- and postmenopausal women" @default.
- W4313596481 cites W2032344343 @default.
- W4313596481 cites W2039275362 @default.
- W4313596481 cites W2047899065 @default.
- W4313596481 cites W2086894756 @default.
- W4313596481 cites W2141662760 @default.
- W4313596481 cites W2176715346 @default.
- W4313596481 cites W2587709415 @default.
- W4313596481 cites W2743628150 @default.
- W4313596481 cites W2770635062 @default.
- W4313596481 cites W2888504867 @default.
- W4313596481 cites W2895607338 @default.
- W4313596481 cites W2902570465 @default.
- W4313596481 cites W2903131550 @default.
- W4313596481 cites W2907086094 @default.
- W4313596481 cites W2936815201 @default.
- W4313596481 cites W2970747439 @default.
- W4313596481 cites W2984871503 @default.
- W4313596481 cites W3006430519 @default.
- W4313596481 cites W3009464852 @default.
- W4313596481 cites W3023997891 @default.
- W4313596481 cites W3197006915 @default.
- W4313596481 doi "https://doi.org/10.1016/j.xagr.2022.100154" @default.
- W4313596481 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36691400" @default.
- W4313596481 hasPublicationYear "2023" @default.
- W4313596481 type Work @default.
- W4313596481 citedByCount "3" @default.
- W4313596481 countsByYear W43135964812023 @default.
- W4313596481 crossrefType "journal-article" @default.
- W4313596481 hasAuthorship W4313596481A5006808546 @default.
- W4313596481 hasAuthorship W4313596481A5045967614 @default.
- W4313596481 hasAuthorship W4313596481A5047777701 @default.
- W4313596481 hasAuthorship W4313596481A5053394383 @default.
- W4313596481 hasAuthorship W4313596481A5067168262 @default.
- W4313596481 hasAuthorship W4313596481A5067849349 @default.
- W4313596481 hasAuthorship W4313596481A5080537887 @default.
- W4313596481 hasBestOaLocation W43135964811 @default.
- W4313596481 hasConcept C121608353 @default.
- W4313596481 hasConcept C126322002 @default.
- W4313596481 hasConcept C131872663 @default.
- W4313596481 hasConcept C142724271 @default.
- W4313596481 hasConcept C143998085 @default.
- W4313596481 hasConcept C2775934546 @default.
- W4313596481 hasConcept C2776606343 @default.
- W4313596481 hasConcept C2777088508 @default.
- W4313596481 hasConcept C2781283455 @default.
- W4313596481 hasConcept C29456083 @default.
- W4313596481 hasConcept C71924100 @default.
- W4313596481 hasConceptScore W4313596481C121608353 @default.
- W4313596481 hasConceptScore W4313596481C126322002 @default.
- W4313596481 hasConceptScore W4313596481C131872663 @default.
- W4313596481 hasConceptScore W4313596481C142724271 @default.
- W4313596481 hasConceptScore W4313596481C143998085 @default.
- W4313596481 hasConceptScore W4313596481C2775934546 @default.
- W4313596481 hasConceptScore W4313596481C2776606343 @default.
- W4313596481 hasConceptScore W4313596481C2777088508 @default.
- W4313596481 hasConceptScore W4313596481C2781283455 @default.
- W4313596481 hasConceptScore W4313596481C29456083 @default.
- W4313596481 hasConceptScore W4313596481C71924100 @default.
- W4313596481 hasIssue "1" @default.
- W4313596481 hasLocation W43135964811 @default.
- W4313596481 hasLocation W43135964812 @default.
- W4313596481 hasLocation W43135964813 @default.
- W4313596481 hasOpenAccess W4313596481 @default.
- W4313596481 hasPrimaryLocation W43135964811 @default.
- W4313596481 hasRelatedWork W2020521433 @default.
- W4313596481 hasRelatedWork W2090242137 @default.
- W4313596481 hasRelatedWork W2178250839 @default.
- W4313596481 hasRelatedWork W2288095368 @default.
- W4313596481 hasRelatedWork W2412505365 @default.
- W4313596481 hasRelatedWork W2519230518 @default.
- W4313596481 hasRelatedWork W2887981491 @default.
- W4313596481 hasRelatedWork W3108652585 @default.
- W4313596481 hasRelatedWork W3166824229 @default.
- W4313596481 hasRelatedWork W3207555704 @default.
- W4313596481 hasVolume "3" @default.
- W4313596481 isParatext "false" @default.
- W4313596481 isRetracted "false" @default.
- W4313596481 workType "article" @default.