Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313596489> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313596489 endingPage "100655" @default.
- W4313596489 startingPage "100655" @default.
- W4313596489 abstract "Speech is an effective way for analyzing mental and psychological health of a speaker's. Automatic speech recognition has been efficiently investigated for human-computer interaction and understanding the emotional & psychological anatomy of human behavior. Emotions and personality are studied to have a strong link while analyzing the prosodic speech parameters. The work proposes a novel personality and emotion classification model using PSO (particle swarm optimization) based CNN (convolution neural network): (NPSO) that predicts both (emotion and personality) The model is computationally efficient and outperforms language models. Cepstral speech features MFCC (mel frequency cepstral constants) is used to predict emotions with 90% testing accuracy and personality with 91% accuracy on SAVEE(Surrey Audio-Visual Expressed Emotion) individually. The correlation between emotion and personality is identified in the work. The experiment uses the four corpora SAVEE, RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song), CREMAD (Crowd-sourced Emotional Multimodal Actors Dataset, TESS (Toronto emotional speech set) corpus, and the big five personality model for finding associations among emotions and personality traits. Experimental results show that the classification accuracy scores for combined datasets are 74% for emotions and 89% for Personality classifications. The proposed model works on seven emotions and five classes of personality. Results prove that MFCC is enough effective in characterizing and recognizing emotions and personality simultaneously." @default.
- W4313596489 created "2023-01-06" @default.
- W4313596489 creator A5063613885 @default.
- W4313596489 creator A5072742671 @default.
- W4313596489 creator A5074045870 @default.
- W4313596489 date "2023-02-01" @default.
- W4313596489 modified "2023-09-25" @default.
- W4313596489 title "Emotional speech-based personality prediction using NPSO architecture in deep learning" @default.
- W4313596489 cites W1989245305 @default.
- W4313596489 cites W2030931454 @default.
- W4313596489 cites W2038936610 @default.
- W4313596489 cites W2089809964 @default.
- W4313596489 cites W2137639365 @default.
- W4313596489 cites W2137702359 @default.
- W4313596489 cites W2164772857 @default.
- W4313596489 cites W2565944610 @default.
- W4313596489 cites W2599743206 @default.
- W4313596489 cites W2800057634 @default.
- W4313596489 cites W2803193013 @default.
- W4313596489 cites W2806246579 @default.
- W4313596489 cites W2914247611 @default.
- W4313596489 cites W2952389999 @default.
- W4313596489 cites W2963963943 @default.
- W4313596489 cites W2969145558 @default.
- W4313596489 cites W2969889150 @default.
- W4313596489 cites W3013295773 @default.
- W4313596489 cites W3043210715 @default.
- W4313596489 cites W3126193945 @default.
- W4313596489 cites W3159327607 @default.
- W4313596489 cites W3172951206 @default.
- W4313596489 cites W3199475695 @default.
- W4313596489 cites W3199514045 @default.
- W4313596489 cites W3216551046 @default.
- W4313596489 cites W4240128527 @default.
- W4313596489 cites W4249873121 @default.
- W4313596489 cites W4296234741 @default.
- W4313596489 doi "https://doi.org/10.1016/j.measen.2022.100655" @default.
- W4313596489 hasPublicationYear "2023" @default.
- W4313596489 type Work @default.
- W4313596489 citedByCount "0" @default.
- W4313596489 crossrefType "journal-article" @default.
- W4313596489 hasAuthorship W4313596489A5063613885 @default.
- W4313596489 hasAuthorship W4313596489A5072742671 @default.
- W4313596489 hasAuthorship W4313596489A5074045870 @default.
- W4313596489 hasBestOaLocation W43135964891 @default.
- W4313596489 hasConcept C151989614 @default.
- W4313596489 hasConcept C154945302 @default.
- W4313596489 hasConcept C15744967 @default.
- W4313596489 hasConcept C180747234 @default.
- W4313596489 hasConcept C187288502 @default.
- W4313596489 hasConcept C204321447 @default.
- W4313596489 hasConcept C28490314 @default.
- W4313596489 hasConcept C2865642 @default.
- W4313596489 hasConcept C41008148 @default.
- W4313596489 hasConcept C52622490 @default.
- W4313596489 hasConcept C77805123 @default.
- W4313596489 hasConcept C81363708 @default.
- W4313596489 hasConcept C88485024 @default.
- W4313596489 hasConceptScore W4313596489C151989614 @default.
- W4313596489 hasConceptScore W4313596489C154945302 @default.
- W4313596489 hasConceptScore W4313596489C15744967 @default.
- W4313596489 hasConceptScore W4313596489C180747234 @default.
- W4313596489 hasConceptScore W4313596489C187288502 @default.
- W4313596489 hasConceptScore W4313596489C204321447 @default.
- W4313596489 hasConceptScore W4313596489C28490314 @default.
- W4313596489 hasConceptScore W4313596489C2865642 @default.
- W4313596489 hasConceptScore W4313596489C41008148 @default.
- W4313596489 hasConceptScore W4313596489C52622490 @default.
- W4313596489 hasConceptScore W4313596489C77805123 @default.
- W4313596489 hasConceptScore W4313596489C81363708 @default.
- W4313596489 hasConceptScore W4313596489C88485024 @default.
- W4313596489 hasLocation W43135964891 @default.
- W4313596489 hasOpenAccess W4313596489 @default.
- W4313596489 hasPrimaryLocation W43135964891 @default.
- W4313596489 hasRelatedWork W1942111967 @default.
- W4313596489 hasRelatedWork W1981297204 @default.
- W4313596489 hasRelatedWork W2120294472 @default.
- W4313596489 hasRelatedWork W2189089965 @default.
- W4313596489 hasRelatedWork W2254811285 @default.
- W4313596489 hasRelatedWork W2380849574 @default.
- W4313596489 hasRelatedWork W2731878113 @default.
- W4313596489 hasRelatedWork W2793383796 @default.
- W4313596489 hasRelatedWork W3203878336 @default.
- W4313596489 hasRelatedWork W4377970696 @default.
- W4313596489 hasVolume "25" @default.
- W4313596489 isParatext "false" @default.
- W4313596489 isRetracted "false" @default.
- W4313596489 workType "article" @default.