Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313596573> ?p ?o ?g. }
- W4313596573 endingPage "105657" @default.
- W4313596573 startingPage "105657" @default.
- W4313596573 abstract "A variety of constitutive models have been developed for soft tissue mechanics. However, there is no established criterion to select a suitable model for a specific application. Although the model that best fits the experimental data can be deemed the most suitable model, this practice often can be insufficient given the inter-sample variability of experimental observations. Herein, we present a Bayesian approach to calculate the relative probabilities of constitutive models based on biaxial mechanical testing of tissue samples. Forty-six samples of porcine aortic valve tissue were tested using a biaxial stretching setup. For each sample, seven ratios of stresses along and perpendicular to the fiber direction were applied. The probabilities of eight invariant-based constitutive models were calculated based on the experimental data using the proposed model selection framework. The calculated probabilities showed that, out of the considered models and based on the information available through the utilized experimental dataset, the May-Newman model was the most probable model for the porcine aortic valve data. When the samples were further grouped into different cusp types, the May-Newman model remained the most probable for the left- and right-coronary cusps, whereas for non-coronary cusps two models were found to be equally probable: the Lee-Sacks model and the May-Newman model. This difference between cusp types was found to be associated with the first principal component analysis (PCA) mode, where this mode's amplitudes of the non-coronary and right-coronary cusps were found to be significantly different. Our results show that a PCA-based statistical model can capture significant variations in the mechanical properties of soft tissues. The presented framework is applicable to other tissue types, and has the potential to provide a structured and rational way of making simulations population-based." @default.
- W4313596573 created "2023-01-06" @default.
- W4313596573 creator A5015810843 @default.
- W4313596573 creator A5035547769 @default.
- W4313596573 creator A5047758669 @default.
- W4313596573 creator A5064376196 @default.
- W4313596573 creator A5076681178 @default.
- W4313596573 date "2023-02-01" @default.
- W4313596573 modified "2023-10-16" @default.
- W4313596573 title "A Bayesian constitutive model selection framework for biaxial mechanical testing of planar soft tissues: Application to porcine aortic valves" @default.
- W4313596573 cites W1971362449 @default.
- W4313596573 cites W1974346231 @default.
- W4313596573 cites W1985115731 @default.
- W4313596573 cites W1988669418 @default.
- W4313596573 cites W2007905153 @default.
- W4313596573 cites W2009033745 @default.
- W4313596573 cites W2013578008 @default.
- W4313596573 cites W2019969694 @default.
- W4313596573 cites W2020271815 @default.
- W4313596573 cites W2026639406 @default.
- W4313596573 cites W2036309886 @default.
- W4313596573 cites W2036613664 @default.
- W4313596573 cites W2039817227 @default.
- W4313596573 cites W2041229203 @default.
- W4313596573 cites W2046611248 @default.
- W4313596573 cites W2048378298 @default.
- W4313596573 cites W2050001975 @default.
- W4313596573 cites W2054159768 @default.
- W4313596573 cites W2057745630 @default.
- W4313596573 cites W2058979107 @default.
- W4313596573 cites W2059010914 @default.
- W4313596573 cites W2059116590 @default.
- W4313596573 cites W2066503776 @default.
- W4313596573 cites W2079884250 @default.
- W4313596573 cites W2081724349 @default.
- W4313596573 cites W2083253722 @default.
- W4313596573 cites W2095548058 @default.
- W4313596573 cites W2096551883 @default.
- W4313596573 cites W2107387625 @default.
- W4313596573 cites W2109224445 @default.
- W4313596573 cites W2114013702 @default.
- W4313596573 cites W2114712109 @default.
- W4313596573 cites W2115330252 @default.
- W4313596573 cites W2115401452 @default.
- W4313596573 cites W2116463491 @default.
- W4313596573 cites W2121411920 @default.
- W4313596573 cites W2130081638 @default.
- W4313596573 cites W2139154829 @default.
- W4313596573 cites W2145100447 @default.
- W4313596573 cites W2156908140 @default.
- W4313596573 cites W2163416746 @default.
- W4313596573 cites W2166739553 @default.
- W4313596573 cites W2178147694 @default.
- W4313596573 cites W2276835118 @default.
- W4313596573 cites W231052996 @default.
- W4313596573 cites W2346121605 @default.
- W4313596573 cites W250362168 @default.
- W4313596573 cites W2572030420 @default.
- W4313596573 cites W2591649390 @default.
- W4313596573 cites W2756021474 @default.
- W4313596573 cites W2798249762 @default.
- W4313596573 cites W2982614105 @default.
- W4313596573 cites W2989625205 @default.
- W4313596573 cites W3045751695 @default.
- W4313596573 cites W3104887532 @default.
- W4313596573 cites W3105958155 @default.
- W4313596573 cites W3112456956 @default.
- W4313596573 cites W3157845708 @default.
- W4313596573 cites W3161303621 @default.
- W4313596573 cites W3208874825 @default.
- W4313596573 cites W4211177544 @default.
- W4313596573 cites W4293339950 @default.
- W4313596573 doi "https://doi.org/10.1016/j.jmbbm.2023.105657" @default.
- W4313596573 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36634438" @default.
- W4313596573 hasPublicationYear "2023" @default.
- W4313596573 type Work @default.
- W4313596573 citedByCount "1" @default.
- W4313596573 countsByYear W43135965732023 @default.
- W4313596573 crossrefType "journal-article" @default.
- W4313596573 hasAuthorship W4313596573A5015810843 @default.
- W4313596573 hasAuthorship W4313596573A5035547769 @default.
- W4313596573 hasAuthorship W4313596573A5047758669 @default.
- W4313596573 hasAuthorship W4313596573A5064376196 @default.
- W4313596573 hasAuthorship W4313596573A5076681178 @default.
- W4313596573 hasBestOaLocation W43135965731 @default.
- W4313596573 hasConcept C105795698 @default.
- W4313596573 hasConcept C107673813 @default.
- W4313596573 hasConcept C127413603 @default.
- W4313596573 hasConcept C135628077 @default.
- W4313596573 hasConcept C136229726 @default.
- W4313596573 hasConcept C141071460 @default.
- W4313596573 hasConcept C192562407 @default.
- W4313596573 hasConcept C202973686 @default.
- W4313596573 hasConcept C2524010 @default.
- W4313596573 hasConcept C27438332 @default.
- W4313596573 hasConcept C2778400075 @default.
- W4313596573 hasConcept C2780714102 @default.
- W4313596573 hasConcept C33923547 @default.