Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313596704> ?p ?o ?g. }
- W4313596704 endingPage "2540" @default.
- W4313596704 startingPage "2521" @default.
- W4313596704 abstract "Abstract With the intensification of anthropogenic warming and urbanization, high‐temperature weather poses an enormous threat to socio‐economic and human healthy. However, the studies on annual high‐temperature days forecasting based on machine learning are relatively deficient. This study proposes a support vector machine (SVM) ensemble model based on grey wolf optimization (GWO) to predict annual high‐temperature days in Guangzhou, Shanghai and Beijing of China. Atmospheric circulation indices during 1959–2013 were utilized as inputs to train and validate models. The fivefold cross validation was used to expand the sample data and evaluate the performance of the member and ensemble models. The optimal ensemble model for Guangzhou has the highest average R (0.8939) and the lowest average root mean square error (RMSE; 3.3771), followed by the optimal ensemble models for Beijing (0.8871 and 3.6059) and Shanghai (0.7578 and 3.9968). Furthermore, compared with the typical SVM and optimal member models, the average validation RMSE of the optimal ensemble model was improved by 32.6 and 10.0% for Guangzhou, by 29.8 and 9.1% for Shanghai, and by 41.3 and 15.1% for Beijing, respectively. This study demonstrates that the GWO‐based SVM ensemble model can be a promising tool for annual high‐temperature days forecasting due to the nonlinear fitting power of the SVM, the hyperparameters tuning capability of the GWO algorithm, and the integration ability of ensemble learning." @default.
- W4313596704 created "2023-01-06" @default.
- W4313596704 creator A5011878567 @default.
- W4313596704 creator A5036073152 @default.
- W4313596704 creator A5047329088 @default.
- W4313596704 date "2023-01-22" @default.
- W4313596704 modified "2023-10-16" @default.
- W4313596704 title "Annual forecasting of high‐temperature days in China through grey wolf optimization‐based support vector machine ensemble" @default.
- W4313596704 cites W1012282081 @default.
- W4313596704 cites W1495180973 @default.
- W4313596704 cites W1503661159 @default.
- W4313596704 cites W1516488966 @default.
- W4313596704 cites W1534477342 @default.
- W4313596704 cites W1601794767 @default.
- W4313596704 cites W1970360626 @default.
- W4313596704 cites W1983801643 @default.
- W4313596704 cites W1985817801 @default.
- W4313596704 cites W1995103232 @default.
- W4313596704 cites W2003193164 @default.
- W4313596704 cites W2013766566 @default.
- W4313596704 cites W2017129658 @default.
- W4313596704 cites W2022300945 @default.
- W4313596704 cites W2026585731 @default.
- W4313596704 cites W2027029919 @default.
- W4313596704 cites W2031009006 @default.
- W4313596704 cites W2049694475 @default.
- W4313596704 cites W2056950965 @default.
- W4313596704 cites W2058564899 @default.
- W4313596704 cites W2061438946 @default.
- W4313596704 cites W2064720685 @default.
- W4313596704 cites W2078727367 @default.
- W4313596704 cites W2082780011 @default.
- W4313596704 cites W2094892158 @default.
- W4313596704 cites W2100805904 @default.
- W4313596704 cites W2120951786 @default.
- W4313596704 cites W2132605206 @default.
- W4313596704 cites W2152610385 @default.
- W4313596704 cites W2153635508 @default.
- W4313596704 cites W2156074653 @default.
- W4313596704 cites W2156909104 @default.
- W4313596704 cites W2161920802 @default.
- W4313596704 cites W2163584947 @default.
- W4313596704 cites W2240673618 @default.
- W4313596704 cites W2331700789 @default.
- W4313596704 cites W2336797520 @default.
- W4313596704 cites W2345637966 @default.
- W4313596704 cites W2507481447 @default.
- W4313596704 cites W2750054359 @default.
- W4313596704 cites W2773518495 @default.
- W4313596704 cites W2775339876 @default.
- W4313596704 cites W2776440630 @default.
- W4313596704 cites W2790884089 @default.
- W4313596704 cites W2792036734 @default.
- W4313596704 cites W2796367884 @default.
- W4313596704 cites W2797373921 @default.
- W4313596704 cites W2804231978 @default.
- W4313596704 cites W2896180549 @default.
- W4313596704 cites W2896791226 @default.
- W4313596704 cites W2902794834 @default.
- W4313596704 cites W2903081523 @default.
- W4313596704 cites W2913019546 @default.
- W4313596704 cites W2920828326 @default.
- W4313596704 cites W2930822591 @default.
- W4313596704 cites W2945326712 @default.
- W4313596704 cites W2947152669 @default.
- W4313596704 cites W2947408880 @default.
- W4313596704 cites W2951251697 @default.
- W4313596704 cites W2954701150 @default.
- W4313596704 cites W2962801792 @default.
- W4313596704 cites W2982734953 @default.
- W4313596704 cites W2990621239 @default.
- W4313596704 cites W2992805966 @default.
- W4313596704 cites W3001901462 @default.
- W4313596704 cites W3004482624 @default.
- W4313596704 cites W3010618348 @default.
- W4313596704 cites W3011200639 @default.
- W4313596704 cites W3024232274 @default.
- W4313596704 cites W3024940778 @default.
- W4313596704 cites W3027898192 @default.
- W4313596704 cites W3033122521 @default.
- W4313596704 cites W3049184217 @default.
- W4313596704 cites W3107569396 @default.
- W4313596704 cites W3157102921 @default.
- W4313596704 doi "https://doi.org/10.1002/joc.7988" @default.
- W4313596704 hasPublicationYear "2023" @default.
- W4313596704 type Work @default.
- W4313596704 citedByCount "0" @default.
- W4313596704 crossrefType "journal-article" @default.
- W4313596704 hasAuthorship W4313596704A5011878567 @default.
- W4313596704 hasAuthorship W4313596704A5036073152 @default.
- W4313596704 hasAuthorship W4313596704A5047329088 @default.
- W4313596704 hasConcept C105795698 @default.
- W4313596704 hasConcept C119857082 @default.
- W4313596704 hasConcept C119898033 @default.
- W4313596704 hasConcept C12267149 @default.
- W4313596704 hasConcept C139945424 @default.
- W4313596704 hasConcept C153294291 @default.
- W4313596704 hasConcept C154945302 @default.