Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313597831> ?p ?o ?g. }
- W4313597831 abstract "Inequality in cities is a phenomenon arising from the complex interactions among urban systems and population activities. Conventional statistics and mathematical models like multiple regression models require assumptions of feature interactions with specified mathematical forms that may fail to fully capture complex interactions of heterogeneous urban components, creating challenges in systematically assessing socio-economic inequality in cities. To overcome the limitations of these conventional mathematical models, in this work, we propose an interpretable machine learning model to capture the complex interactions of urban variables and the main interaction effects on socio-economic statuses. We extract urban features from high-resolution anonymized mobile phone data with billions of activity records related to people and facilities in 47 US metropolitan areas and predict the attributes of urban areas from six income and race groups. We show that socio-economic inequality in cities can be effectively measured by the predictability of trained machine learning models in controlled experiments. We also examine the tradeoff between spatial resolution, sample size, and model accuracy; test the presence of influential features; and measure the transferability of the trained models to identify the optimal values for controlled factors. The results show that metropolitan areas share similar patterns of inequality, which could be moderated by improved polycentric facility distribution and road density. The generality of associated factors and transferability of machine learning models can help bridge data gaps between cities and inform about inequality alleviation strategies. Despite similarities, 50% to 90% of variations among cities are still present, which shows the need for localized policies for inequality alleviation and mitigation. Our study shows that machine learning models could be an effective approach to examine inequality, which opens avenues for more data-centric and complexity-informed planning, design, policymaking, and engineering toward equitable cities." @default.
- W4313597831 created "2023-01-06" @default.
- W4313597831 creator A5023165780 @default.
- W4313597831 creator A5040664702 @default.
- W4313597831 creator A5046845990 @default.
- W4313597831 creator A5067175415 @default.
- W4313597831 date "2023-01-06" @default.
- W4313597831 modified "2023-10-03" @default.
- W4313597831 title "Interpretable machine learning learns complex interactions of urban features to understand socio‐economic inequality" @default.
- W4313597831 cites W1505345839 @default.
- W4313597831 cites W2016561445 @default.
- W4313597831 cites W2065829940 @default.
- W4313597831 cites W2077753345 @default.
- W4313597831 cites W2086479170 @default.
- W4313597831 cites W2099141993 @default.
- W4313597831 cites W2155487257 @default.
- W4313597831 cites W2344345750 @default.
- W4313597831 cites W2736832651 @default.
- W4313597831 cites W2813703984 @default.
- W4313597831 cites W2883504763 @default.
- W4313597831 cites W2912921214 @default.
- W4313597831 cites W2916759713 @default.
- W4313597831 cites W2951857974 @default.
- W4313597831 cites W2980489195 @default.
- W4313597831 cites W2999806019 @default.
- W4313597831 cites W3005967292 @default.
- W4313597831 cites W3009948084 @default.
- W4313597831 cites W3024397965 @default.
- W4313597831 cites W3082591845 @default.
- W4313597831 cites W3085404930 @default.
- W4313597831 cites W3102476541 @default.
- W4313597831 cites W3103298250 @default.
- W4313597831 cites W3119196674 @default.
- W4313597831 cites W3159033417 @default.
- W4313597831 cites W4211158759 @default.
- W4313597831 cites W4234698323 @default.
- W4313597831 cites W4240428499 @default.
- W4313597831 cites W4378009855 @default.
- W4313597831 doi "https://doi.org/10.1111/mice.12972" @default.
- W4313597831 hasPublicationYear "2023" @default.
- W4313597831 type Work @default.
- W4313597831 citedByCount "1" @default.
- W4313597831 countsByYear W43135978312023 @default.
- W4313597831 crossrefType "journal-article" @default.
- W4313597831 hasAuthorship W4313597831A5023165780 @default.
- W4313597831 hasAuthorship W4313597831A5040664702 @default.
- W4313597831 hasAuthorship W4313597831A5046845990 @default.
- W4313597831 hasAuthorship W4313597831A5067175415 @default.
- W4313597831 hasConcept C119857082 @default.
- W4313597831 hasConcept C134306372 @default.
- W4313597831 hasConcept C138885662 @default.
- W4313597831 hasConcept C144024400 @default.
- W4313597831 hasConcept C149782125 @default.
- W4313597831 hasConcept C149923435 @default.
- W4313597831 hasConcept C154945302 @default.
- W4313597831 hasConcept C158739034 @default.
- W4313597831 hasConcept C162324750 @default.
- W4313597831 hasConcept C166957645 @default.
- W4313597831 hasConcept C187736073 @default.
- W4313597831 hasConcept C205649164 @default.
- W4313597831 hasConcept C2776401178 @default.
- W4313597831 hasConcept C2780767217 @default.
- W4313597831 hasConcept C2908647359 @default.
- W4313597831 hasConcept C33923547 @default.
- W4313597831 hasConcept C41008148 @default.
- W4313597831 hasConcept C41895202 @default.
- W4313597831 hasConcept C45555294 @default.
- W4313597831 hasConceptScore W4313597831C119857082 @default.
- W4313597831 hasConceptScore W4313597831C134306372 @default.
- W4313597831 hasConceptScore W4313597831C138885662 @default.
- W4313597831 hasConceptScore W4313597831C144024400 @default.
- W4313597831 hasConceptScore W4313597831C149782125 @default.
- W4313597831 hasConceptScore W4313597831C149923435 @default.
- W4313597831 hasConceptScore W4313597831C154945302 @default.
- W4313597831 hasConceptScore W4313597831C158739034 @default.
- W4313597831 hasConceptScore W4313597831C162324750 @default.
- W4313597831 hasConceptScore W4313597831C166957645 @default.
- W4313597831 hasConceptScore W4313597831C187736073 @default.
- W4313597831 hasConceptScore W4313597831C205649164 @default.
- W4313597831 hasConceptScore W4313597831C2776401178 @default.
- W4313597831 hasConceptScore W4313597831C2780767217 @default.
- W4313597831 hasConceptScore W4313597831C2908647359 @default.
- W4313597831 hasConceptScore W4313597831C33923547 @default.
- W4313597831 hasConceptScore W4313597831C41008148 @default.
- W4313597831 hasConceptScore W4313597831C41895202 @default.
- W4313597831 hasConceptScore W4313597831C45555294 @default.
- W4313597831 hasLocation W43135978311 @default.
- W4313597831 hasOpenAccess W4313597831 @default.
- W4313597831 hasPrimaryLocation W43135978311 @default.
- W4313597831 hasRelatedWork W2408016211 @default.
- W4313597831 hasRelatedWork W2565976671 @default.
- W4313597831 hasRelatedWork W2748952813 @default.
- W4313597831 hasRelatedWork W2884294072 @default.
- W4313597831 hasRelatedWork W3125891822 @default.
- W4313597831 hasRelatedWork W4205364923 @default.
- W4313597831 hasRelatedWork W4290738900 @default.
- W4313597831 hasRelatedWork W4298624824 @default.
- W4313597831 hasRelatedWork W657361792 @default.
- W4313597831 hasRelatedWork W2617508617 @default.
- W4313597831 isParatext "false" @default.