Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313597967> ?p ?o ?g. }
- W4313597967 endingPage "1719" @default.
- W4313597967 startingPage "1707" @default.
- W4313597967 abstract "Nowadays, wireless body area networks are the center of attention for patients’ health data monitoring. In these networks, the sensor nodes deal with the limited energy of batteries to provide sustainable services. Unlimited energy supply by energy harvesters in these nodes as complementary to batteries makes perform in a stable state. However, the harvested energy has an irregular and unpredictable rate. When the data sensed by the sensor is stable, the continuous activity of the energy-harvesting body node (EH-BN) is necessary. Also, it can fully discharge the EH-BN energy if the harvestable energy rate is low. Therefore, it is required that EH-BN to be in sleep and wake modes periodically to adjust the duty cycle for EH-BN. Reinforcement learning algorithms perform nicely in determining the duty cycle under uncertain conditions. Previous RL-based methods for determining the BN’s duty cycle have two fundamental problems: (1) BN suffers from the emergency packet loss or unnecessary frequent sleeping and waking, and (2) discretization of the problem space does not ensure the determination of the optimal duty cycle. This paper proposes a new method for determining the EH-BN’s duty cycle based on deep reinforcement learning (DRDC). The novelties of DRDC are as follows: (1) considers the change rate of data sensed by BN in addition to its energy to avoid the emergency packet loss and unnecessary frequent sleep/wake, (2) uses Deep Q-Network (DQN) with light neural network for accurately determining BN’s duty cycle, (3) applies a three-layer communication architectural model when there are extreme limitations in BN resources to preserve the memory constraints and computational power of EH-BN. In this architectural model, the algorithm is executed on a local server, and only the trained policy is transmitted to EH-BN. (4) designs a reward function to realize the suitable performance of the DQN algorithm. This function simultaneously depends on the EH-BN energy, change rate of the sensed data, and sleep time and can balance these parameters. Results of simulations suggest that the proposed method decreases the EH-BN duty cycle by about 28% and the data overhead by more than 50% on average relative to similar studies." @default.
- W4313597967 created "2023-01-06" @default.
- W4313597967 creator A5043336931 @default.
- W4313597967 creator A5066731802 @default.
- W4313597967 date "2023-12-01" @default.
- W4313597967 modified "2023-09-26" @default.
- W4313597967 title "DRDC: Deep reinforcement learning based duty cycle for energy harvesting body sensor node" @default.
- W4313597967 cites W2033682954 @default.
- W4313597967 cites W2083835467 @default.
- W4313597967 cites W2145339207 @default.
- W4313597967 cites W2149345575 @default.
- W4313597967 cites W2156626839 @default.
- W4313597967 cites W2162800060 @default.
- W4313597967 cites W2318451197 @default.
- W4313597967 cites W2606410502 @default.
- W4313597967 cites W2790423762 @default.
- W4313597967 cites W2901518517 @default.
- W4313597967 cites W2914897461 @default.
- W4313597967 cites W2916641566 @default.
- W4313597967 cites W2917842573 @default.
- W4313597967 cites W2919485146 @default.
- W4313597967 cites W2954380236 @default.
- W4313597967 cites W2955042957 @default.
- W4313597967 cites W2963842277 @default.
- W4313597967 cites W2971847049 @default.
- W4313597967 cites W2979923348 @default.
- W4313597967 cites W2996343649 @default.
- W4313597967 cites W3013723131 @default.
- W4313597967 cites W3016042483 @default.
- W4313597967 cites W3149137603 @default.
- W4313597967 cites W3193218352 @default.
- W4313597967 cites W4210355615 @default.
- W4313597967 cites W4221051123 @default.
- W4313597967 cites W4224314376 @default.
- W4313597967 cites W4285099403 @default.
- W4313597967 cites W4308311794 @default.
- W4313597967 doi "https://doi.org/10.1016/j.egyr.2022.12.138" @default.
- W4313597967 hasPublicationYear "2023" @default.
- W4313597967 type Work @default.
- W4313597967 citedByCount "2" @default.
- W4313597967 countsByYear W43135979672023 @default.
- W4313597967 crossrefType "journal-article" @default.
- W4313597967 hasAuthorship W4313597967A5043336931 @default.
- W4313597967 hasAuthorship W4313597967A5066731802 @default.
- W4313597967 hasBestOaLocation W43135979671 @default.
- W4313597967 hasConcept C105795698 @default.
- W4313597967 hasConcept C108037233 @default.
- W4313597967 hasConcept C111185680 @default.
- W4313597967 hasConcept C119599485 @default.
- W4313597967 hasConcept C127413603 @default.
- W4313597967 hasConcept C154945302 @default.
- W4313597967 hasConcept C158379750 @default.
- W4313597967 hasConcept C165801399 @default.
- W4313597967 hasConcept C186370098 @default.
- W4313597967 hasConcept C199822604 @default.
- W4313597967 hasConcept C24590314 @default.
- W4313597967 hasConcept C2780165032 @default.
- W4313597967 hasConcept C31258907 @default.
- W4313597967 hasConcept C33923547 @default.
- W4313597967 hasConcept C41008148 @default.
- W4313597967 hasConcept C41971633 @default.
- W4313597967 hasConcept C44154836 @default.
- W4313597967 hasConcept C555944384 @default.
- W4313597967 hasConcept C62611344 @default.
- W4313597967 hasConcept C66938386 @default.
- W4313597967 hasConcept C76155785 @default.
- W4313597967 hasConcept C79403827 @default.
- W4313597967 hasConcept C97541855 @default.
- W4313597967 hasConceptScore W4313597967C105795698 @default.
- W4313597967 hasConceptScore W4313597967C108037233 @default.
- W4313597967 hasConceptScore W4313597967C111185680 @default.
- W4313597967 hasConceptScore W4313597967C119599485 @default.
- W4313597967 hasConceptScore W4313597967C127413603 @default.
- W4313597967 hasConceptScore W4313597967C154945302 @default.
- W4313597967 hasConceptScore W4313597967C158379750 @default.
- W4313597967 hasConceptScore W4313597967C165801399 @default.
- W4313597967 hasConceptScore W4313597967C186370098 @default.
- W4313597967 hasConceptScore W4313597967C199822604 @default.
- W4313597967 hasConceptScore W4313597967C24590314 @default.
- W4313597967 hasConceptScore W4313597967C2780165032 @default.
- W4313597967 hasConceptScore W4313597967C31258907 @default.
- W4313597967 hasConceptScore W4313597967C33923547 @default.
- W4313597967 hasConceptScore W4313597967C41008148 @default.
- W4313597967 hasConceptScore W4313597967C41971633 @default.
- W4313597967 hasConceptScore W4313597967C44154836 @default.
- W4313597967 hasConceptScore W4313597967C555944384 @default.
- W4313597967 hasConceptScore W4313597967C62611344 @default.
- W4313597967 hasConceptScore W4313597967C66938386 @default.
- W4313597967 hasConceptScore W4313597967C76155785 @default.
- W4313597967 hasConceptScore W4313597967C79403827 @default.
- W4313597967 hasConceptScore W4313597967C97541855 @default.
- W4313597967 hasLocation W43135979671 @default.
- W4313597967 hasOpenAccess W4313597967 @default.
- W4313597967 hasPrimaryLocation W43135979671 @default.
- W4313597967 hasRelatedWork W1607391015 @default.
- W4313597967 hasRelatedWork W2011501918 @default.
- W4313597967 hasRelatedWork W2096614093 @default.
- W4313597967 hasRelatedWork W2124777314 @default.