Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313598049> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4313598049 endingPage "12" @default.
- W4313598049 startingPage "1" @default.
- W4313598049 abstract "Plant-parasitic nematodes cause various diseases that can be fatal to the infected plants. It causes losses to the agricultural industry, such as crop failure and poor crop quality. Developing an accurate nematode classification system is vital for pest identification and control. Deep learning classification techniques can help speed up Nematode identification as it can perform tasks directly from images. In the present study, four state-of-the-art deep learning models (ResNet101v2, CoAtNet-0, Effi- cientNetV2B0, and EfficientNetV2M) were evaluated in plant-parasitic nematode classification from microscopic image. The models were trained using a combination of three different optimizers (Adam, SGD, dan RMSProp) and several data augmentation with image transformations, such as image flip, blurring, noise addition, brightness, and contrast adjustment. The performance of the trained models was varied. Regarding test accuracy, EfficientNetV2B0 and EfficientNetV2M using RMSProp and brightness augmentation give the best result of 97.94% However, the overall performance of EfficientNetV2M was superior, with 98.66% mean class accuracy, 97.99%F1 score, 98.26% average precision, and 97.94% average recall." @default.
- W4313598049 created "2023-01-06" @default.
- W4313598049 creator A5014397311 @default.
- W4313598049 creator A5025723843 @default.
- W4313598049 creator A5045818141 @default.
- W4313598049 date "2023-03-01" @default.
- W4313598049 modified "2023-10-14" @default.
- W4313598049 title "Deep learning models for automatic identification of plant-parasitic nematode" @default.
- W4313598049 cites W1941885189 @default.
- W4313598049 cites W1992730126 @default.
- W4313598049 cites W2156095709 @default.
- W4313598049 cites W2161670040 @default.
- W4313598049 cites W2900555903 @default.
- W4313598049 cites W2928604006 @default.
- W4313598049 cites W2944599236 @default.
- W4313598049 cites W2954996726 @default.
- W4313598049 cites W2990346675 @default.
- W4313598049 cites W3030114865 @default.
- W4313598049 cites W3106500619 @default.
- W4313598049 cites W3109059087 @default.
- W4313598049 cites W3155966371 @default.
- W4313598049 cites W4200349706 @default.
- W4313598049 cites W4210308489 @default.
- W4313598049 doi "https://doi.org/10.1016/j.aiia.2022.12.002" @default.
- W4313598049 hasPublicationYear "2023" @default.
- W4313598049 type Work @default.
- W4313598049 citedByCount "3" @default.
- W4313598049 countsByYear W43135980492023 @default.
- W4313598049 crossrefType "journal-article" @default.
- W4313598049 hasAuthorship W4313598049A5014397311 @default.
- W4313598049 hasAuthorship W4313598049A5025723843 @default.
- W4313598049 hasAuthorship W4313598049A5045818141 @default.
- W4313598049 hasBestOaLocation W43135980491 @default.
- W4313598049 hasConcept C108583219 @default.
- W4313598049 hasConcept C116834253 @default.
- W4313598049 hasConcept C120665830 @default.
- W4313598049 hasConcept C121332964 @default.
- W4313598049 hasConcept C125245961 @default.
- W4313598049 hasConcept C153180895 @default.
- W4313598049 hasConcept C154945302 @default.
- W4313598049 hasConcept C18903297 @default.
- W4313598049 hasConcept C2778830712 @default.
- W4313598049 hasConcept C31972630 @default.
- W4313598049 hasConcept C41008148 @default.
- W4313598049 hasConcept C59822182 @default.
- W4313598049 hasConcept C86803240 @default.
- W4313598049 hasConceptScore W4313598049C108583219 @default.
- W4313598049 hasConceptScore W4313598049C116834253 @default.
- W4313598049 hasConceptScore W4313598049C120665830 @default.
- W4313598049 hasConceptScore W4313598049C121332964 @default.
- W4313598049 hasConceptScore W4313598049C125245961 @default.
- W4313598049 hasConceptScore W4313598049C153180895 @default.
- W4313598049 hasConceptScore W4313598049C154945302 @default.
- W4313598049 hasConceptScore W4313598049C18903297 @default.
- W4313598049 hasConceptScore W4313598049C2778830712 @default.
- W4313598049 hasConceptScore W4313598049C31972630 @default.
- W4313598049 hasConceptScore W4313598049C41008148 @default.
- W4313598049 hasConceptScore W4313598049C59822182 @default.
- W4313598049 hasConceptScore W4313598049C86803240 @default.
- W4313598049 hasFunder F4320318871 @default.
- W4313598049 hasLocation W43135980491 @default.
- W4313598049 hasOpenAccess W4313598049 @default.
- W4313598049 hasPrimaryLocation W43135980491 @default.
- W4313598049 hasRelatedWork W1986038857 @default.
- W4313598049 hasRelatedWork W2012641939 @default.
- W4313598049 hasRelatedWork W2035413902 @default.
- W4313598049 hasRelatedWork W2120516655 @default.
- W4313598049 hasRelatedWork W2575060017 @default.
- W4313598049 hasRelatedWork W2731899572 @default.
- W4313598049 hasRelatedWork W2738221750 @default.
- W4313598049 hasRelatedWork W2908959303 @default.
- W4313598049 hasRelatedWork W3001218575 @default.
- W4313598049 hasRelatedWork W4244517792 @default.
- W4313598049 hasVolume "7" @default.
- W4313598049 isParatext "false" @default.
- W4313598049 isRetracted "false" @default.
- W4313598049 workType "article" @default.