Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313598401> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4313598401 abstract "For an algebraic number $alpha$ of degree $n$, let $mathcal{M}_{alpha}$ be the $mathbb{Z}$-module generated by $1,alpha ,ldots ,alpha^{n-1}$; then $mathbb{Z}_{alpha}:={xiinmathbb{Q} (alpha ):, ximathcal{M}_{alpha}subseteqmathcal{M}_{alpha}}$ is the ring of scalars of $mathcal{M}_{alpha}$. We call an order of the shape $mathbb{Z}_{alpha}$ emph{rationally monogenic}. If $alpha$ is an algebraic integer, then $mathbb{Z}_{alpha}=mathbb{Z}[alpha ]$ is monogenic. Rationally monogenic orders are special types of invariant orders of binary forms, which have been studied intensively. If $alpha ,beta$ are two $text{GL}_2(mathbb{Z})$-equivalent algebraic numbers, i.e., $beta =(aalpha +b)/(calpha +d)$ for some $big(begin{smallmatrix}a&bc&dend{smallmatrix}big)intext{GL}_2(mathbb{Z})$, then $mathbb{Z}_{alpha}=mathbb{Z}_{beta}$. Given an order $mathcal{O}$ of a number field, we call a $text{GL}_2(mathbb{Z})$-equivalence class of $alpha$ with $mathbb{Z}_{alpha}=mathcal{O}$ a emph{rational monogenization} of $mathcal{O}$. We prove the following. If $K$ is a quartic number field, then $K$ has only finitely many orders with more than two rational monogenizations. This is best possible. Further, if $K$ is a number field of degree $geq 5$, the Galois group of whose normal closure is $5$-transitive, then $K$ has only finitely many orders with more than one rational monogenization. The proof uses finiteness results for unit equations, which in turn were derived from Schmidt's Subspace Theorem. We generalize the above results to rationally monogenic orders over rings of $S$-integers of number fields. Our results extend work of B'{e}rczes, GyH{o}ry and the author from 2013 on multiply monogenic orders." @default.
- W4313598401 created "2023-01-06" @default.
- W4313598401 creator A5037959765 @default.
- W4313598401 date "2023-01-04" @default.
- W4313598401 modified "2023-09-27" @default.
- W4313598401 title "Orders with few rational monogenizations" @default.
- W4313598401 doi "https://doi.org/10.4064/aa230120-16-7" @default.
- W4313598401 hasPublicationYear "2023" @default.
- W4313598401 type Work @default.
- W4313598401 citedByCount "0" @default.
- W4313598401 crossrefType "posted-content" @default.
- W4313598401 hasAuthorship W4313598401A5037959765 @default.
- W4313598401 hasBestOaLocation W43135984011 @default.
- W4313598401 hasConcept C10138342 @default.
- W4313598401 hasConcept C114614502 @default.
- W4313598401 hasConcept C118615104 @default.
- W4313598401 hasConcept C121332964 @default.
- W4313598401 hasConcept C12657307 @default.
- W4313598401 hasConcept C134306372 @default.
- W4313598401 hasConcept C162324750 @default.
- W4313598401 hasConcept C182306322 @default.
- W4313598401 hasConcept C24890656 @default.
- W4313598401 hasConcept C2775997480 @default.
- W4313598401 hasConcept C33923547 @default.
- W4313598401 hasConcept C9376300 @default.
- W4313598401 hasConceptScore W4313598401C10138342 @default.
- W4313598401 hasConceptScore W4313598401C114614502 @default.
- W4313598401 hasConceptScore W4313598401C118615104 @default.
- W4313598401 hasConceptScore W4313598401C121332964 @default.
- W4313598401 hasConceptScore W4313598401C12657307 @default.
- W4313598401 hasConceptScore W4313598401C134306372 @default.
- W4313598401 hasConceptScore W4313598401C162324750 @default.
- W4313598401 hasConceptScore W4313598401C182306322 @default.
- W4313598401 hasConceptScore W4313598401C24890656 @default.
- W4313598401 hasConceptScore W4313598401C2775997480 @default.
- W4313598401 hasConceptScore W4313598401C33923547 @default.
- W4313598401 hasConceptScore W4313598401C9376300 @default.
- W4313598401 hasLocation W43135984011 @default.
- W4313598401 hasOpenAccess W4313598401 @default.
- W4313598401 hasPrimaryLocation W43135984011 @default.
- W4313598401 hasRelatedWork W2018671907 @default.
- W4313598401 hasRelatedWork W2042193838 @default.
- W4313598401 hasRelatedWork W2045914478 @default.
- W4313598401 hasRelatedWork W2055595190 @default.
- W4313598401 hasRelatedWork W2100804537 @default.
- W4313598401 hasRelatedWork W2317395509 @default.
- W4313598401 hasRelatedWork W3018902061 @default.
- W4313598401 hasRelatedWork W3081770082 @default.
- W4313598401 hasRelatedWork W4254355384 @default.
- W4313598401 hasRelatedWork W4381514690 @default.
- W4313598401 isParatext "false" @default.
- W4313598401 isRetracted "false" @default.
- W4313598401 workType "article" @default.