Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313598715> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4313598715 endingPage "3025" @default.
- W4313598715 startingPage "3012" @default.
- W4313598715 abstract "With the rapid development of autonomous driving technology, radar sensors play a vital role in the perception system due to their robustness under harsh environmental conditions, exact range and velocity perception capability. However, the state-of-the-art performance of algorithms solely based on radar to achieve various perception tasks, such as classifying road users and infrastructures, still lags far behind expectation. Their failure can mainly be accounted for the extreme sparseness of radar point cloud for objects, low angular resolution, and the issue of ghost targets. In this work, we propose a novel network that employs the complex range-Doppler matrix as input to achieve radar-tailored panoptic segmentation (i.e., <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>free-space segmentation</i> and <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>object detection</i> ). Our network surpasses previous works in <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>free-space segmentation</i> and <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>object detection</i> tasks, and the improvement in the former task is especially notable. During training, the segmented camera image with radar customized adaption is utilized as the ground truth. Through such a cross-modal supervision method, the labeling expense is alleviated considerably. Based on it, we further design an innovative camera-radar system concept that is able to automatically train deep neural networks with radar measurement." @default.
- W4313598715 created "2023-01-06" @default.
- W4313598715 creator A5026943179 @default.
- W4313598715 creator A5037328525 @default.
- W4313598715 creator A5058254176 @default.
- W4313598715 creator A5079817251 @default.
- W4313598715 date "2023-04-01" @default.
- W4313598715 modified "2023-09-26" @default.
- W4313598715 title "Cross-Modal Supervision-Based Multitask Learning With Automotive Radar Raw Data" @default.
- W4313598715 cites W1536680647 @default.
- W4313598715 cites W1903029394 @default.
- W4313598715 cites W2340897893 @default.
- W4313598715 cites W2412782625 @default.
- W4313598715 cites W2757963268 @default.
- W4313598715 cites W2910628332 @default.
- W4313598715 cites W2963150697 @default.
- W4313598715 cites W2963351448 @default.
- W4313598715 cites W2970475272 @default.
- W4313598715 cites W2990710319 @default.
- W4313598715 cites W3010503765 @default.
- W4313598715 cites W3084655389 @default.
- W4313598715 cites W3090671471 @default.
- W4313598715 cites W3116003114 @default.
- W4313598715 cites W3120351402 @default.
- W4313598715 cites W3127273930 @default.
- W4313598715 cites W3133929890 @default.
- W4313598715 cites W3135991645 @default.
- W4313598715 cites W3161421216 @default.
- W4313598715 cites W3176358081 @default.
- W4313598715 cites W4230808100 @default.
- W4313598715 cites W4312811864 @default.
- W4313598715 doi "https://doi.org/10.1109/tiv.2023.3234583" @default.
- W4313598715 hasPublicationYear "2023" @default.
- W4313598715 type Work @default.
- W4313598715 citedByCount "0" @default.
- W4313598715 crossrefType "journal-article" @default.
- W4313598715 hasAuthorship W4313598715A5026943179 @default.
- W4313598715 hasAuthorship W4313598715A5037328525 @default.
- W4313598715 hasAuthorship W4313598715A5058254176 @default.
- W4313598715 hasAuthorship W4313598715A5079817251 @default.
- W4313598715 hasConcept C154945302 @default.
- W4313598715 hasConcept C31972630 @default.
- W4313598715 hasConcept C41008148 @default.
- W4313598715 hasConcept C554190296 @default.
- W4313598715 hasConcept C76155785 @default.
- W4313598715 hasConcept C89600930 @default.
- W4313598715 hasConceptScore W4313598715C154945302 @default.
- W4313598715 hasConceptScore W4313598715C31972630 @default.
- W4313598715 hasConceptScore W4313598715C41008148 @default.
- W4313598715 hasConceptScore W4313598715C554190296 @default.
- W4313598715 hasConceptScore W4313598715C76155785 @default.
- W4313598715 hasConceptScore W4313598715C89600930 @default.
- W4313598715 hasIssue "4" @default.
- W4313598715 hasLocation W43135987151 @default.
- W4313598715 hasOpenAccess W4313598715 @default.
- W4313598715 hasPrimaryLocation W43135987151 @default.
- W4313598715 hasRelatedWork W1669643531 @default.
- W4313598715 hasRelatedWork W2005437358 @default.
- W4313598715 hasRelatedWork W2008656436 @default.
- W4313598715 hasRelatedWork W2023558673 @default.
- W4313598715 hasRelatedWork W2039154422 @default.
- W4313598715 hasRelatedWork W2110230079 @default.
- W4313598715 hasRelatedWork W2122581818 @default.
- W4313598715 hasRelatedWork W2134924024 @default.
- W4313598715 hasRelatedWork W2517104666 @default.
- W4313598715 hasRelatedWork W2182382398 @default.
- W4313598715 hasVolume "8" @default.
- W4313598715 isParatext "false" @default.
- W4313598715 isRetracted "false" @default.
- W4313598715 workType "article" @default.