Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313598771> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4313598771 endingPage "238" @default.
- W4313598771 startingPage "226" @default.
- W4313598771 abstract "The success of intelligent transportation systems relies heavily on accurate traffic prediction, in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight. Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling. However, this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps. Furthermore, it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph (e.g., deriving from the geodesic distance or approximate connectivity), and may not reflect the actual interaction between nodes. To overcome those limitations, our paper proposes a spatial-temporal graph synchronous aggregation (STGSA) model to extract the localized and long-term spatial-temporal dependencies simultaneously. Specifically, a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process. In each STGSA block, we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes, and the potential temporal dependence is further fine-tuned by an adaptive weighting operation. Meanwhile, we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a data-driven manner. Then, inspired by the multi-head attention mechanism which can jointly emphasize information from different representation subspaces, we construct a multi-stream module based on the STGSA blocks to capture global information. It projects the embedding input repeatedly with multiple different channels. Finally, the predicted values are generated by stacking several multi-stream modules. Extensive experiments are constructed on six real-world datasets, and numerical results show that the proposed STGSA model significantly outperforms the benchmarks." @default.
- W4313598771 created "2023-01-06" @default.
- W4313598771 creator A5013390572 @default.
- W4313598771 creator A5027052258 @default.
- W4313598771 creator A5030816801 @default.
- W4313598771 creator A5047425057 @default.
- W4313598771 creator A5062178734 @default.
- W4313598771 creator A5065645583 @default.
- W4313598771 creator A5074160086 @default.
- W4313598771 creator A5083438052 @default.
- W4313598771 date "2023-01-01" @default.
- W4313598771 modified "2023-10-02" @default.
- W4313598771 title "STGSA: A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction" @default.
- W4313598771 cites W1998780387 @default.
- W4313598771 cites W2034550637 @default.
- W4313598771 cites W2036785686 @default.
- W4313598771 cites W2049952439 @default.
- W4313598771 cites W2064675550 @default.
- W4313598771 cites W2108196201 @default.
- W4313598771 cites W2133747588 @default.
- W4313598771 cites W2140051110 @default.
- W4313598771 cites W2171234954 @default.
- W4313598771 cites W2342427580 @default.
- W4313598771 cites W2565330852 @default.
- W4313598771 cites W2593182953 @default.
- W4313598771 cites W2808862972 @default.
- W4313598771 cites W2885178111 @default.
- W4313598771 cites W2904832339 @default.
- W4313598771 cites W2950817888 @default.
- W4313598771 cites W2963017945 @default.
- W4313598771 cites W2963240573 @default.
- W4313598771 cites W2965341826 @default.
- W4313598771 cites W2969825018 @default.
- W4313598771 cites W2978341006 @default.
- W4313598771 cites W2996847713 @default.
- W4313598771 cites W3004878229 @default.
- W4313598771 cites W3012562343 @default.
- W4313598771 cites W3019396605 @default.
- W4313598771 cites W3034749137 @default.
- W4313598771 cites W3080911033 @default.
- W4313598771 cites W3092476034 @default.
- W4313598771 cites W3094071795 @default.
- W4313598771 cites W3103720336 @default.
- W4313598771 cites W3114536428 @default.
- W4313598771 cites W3120595940 @default.
- W4313598771 cites W3142053154 @default.
- W4313598771 cites W3196788510 @default.
- W4313598771 cites W3213215274 @default.
- W4313598771 cites W4210375380 @default.
- W4313598771 cites W4224293834 @default.
- W4313598771 doi "https://doi.org/10.1109/jas.2023.123033" @default.
- W4313598771 hasPublicationYear "2023" @default.
- W4313598771 type Work @default.
- W4313598771 citedByCount "4" @default.
- W4313598771 countsByYear W43135987712023 @default.
- W4313598771 crossrefType "journal-article" @default.
- W4313598771 hasAuthorship W4313598771A5013390572 @default.
- W4313598771 hasAuthorship W4313598771A5027052258 @default.
- W4313598771 hasAuthorship W4313598771A5030816801 @default.
- W4313598771 hasAuthorship W4313598771A5047425057 @default.
- W4313598771 hasAuthorship W4313598771A5062178734 @default.
- W4313598771 hasAuthorship W4313598771A5065645583 @default.
- W4313598771 hasAuthorship W4313598771A5074160086 @default.
- W4313598771 hasAuthorship W4313598771A5083438052 @default.
- W4313598771 hasConcept C110484373 @default.
- W4313598771 hasConcept C11413529 @default.
- W4313598771 hasConcept C124101348 @default.
- W4313598771 hasConcept C132525143 @default.
- W4313598771 hasConcept C180356752 @default.
- W4313598771 hasConcept C41008148 @default.
- W4313598771 hasConcept C80444323 @default.
- W4313598771 hasConceptScore W4313598771C110484373 @default.
- W4313598771 hasConceptScore W4313598771C11413529 @default.
- W4313598771 hasConceptScore W4313598771C124101348 @default.
- W4313598771 hasConceptScore W4313598771C132525143 @default.
- W4313598771 hasConceptScore W4313598771C180356752 @default.
- W4313598771 hasConceptScore W4313598771C41008148 @default.
- W4313598771 hasConceptScore W4313598771C80444323 @default.
- W4313598771 hasIssue "1" @default.
- W4313598771 hasLocation W43135987711 @default.
- W4313598771 hasOpenAccess W4313598771 @default.
- W4313598771 hasPrimaryLocation W43135987711 @default.
- W4313598771 hasRelatedWork W2061646779 @default.
- W4313598771 hasRelatedWork W2353839841 @default.
- W4313598771 hasRelatedWork W2359077928 @default.
- W4313598771 hasRelatedWork W2374780422 @default.
- W4313598771 hasRelatedWork W2604585036 @default.
- W4313598771 hasRelatedWork W3164306936 @default.
- W4313598771 hasRelatedWork W3194558310 @default.
- W4313598771 hasRelatedWork W4206495562 @default.
- W4313598771 hasRelatedWork W4287178724 @default.
- W4313598771 hasRelatedWork W4385849035 @default.
- W4313598771 hasVolume "10" @default.
- W4313598771 isParatext "false" @default.
- W4313598771 isRetracted "false" @default.
- W4313598771 workType "article" @default.