Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313598807> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313598807 endingPage "785" @default.
- W4313598807 startingPage "769" @default.
- W4313598807 abstract "Modern software development has moved toward agile growth and rapid delivery, where developers must meet the changing needs of users instantaneously. In such a situation, plug-and-play Third-Party Libraries (TPLs) introduce a considerable amount of convenience to developers. However, selecting the exact candidate that meets the project requirements from the countless TPLs is challenging for developers. Previous works have considered setting up a personalized recommender system to suggest TPLs for developers. Unfortunately, these approaches rarely consider the complex relationships between applications and TPLs, and are unsatisfactory in accuracy, training speed, and convergence speed. In this paper, we propose a new end-to-end recommendation model called Neighbor Library-Aware Graph Neural Network (NLA-GNN). Unlike previous works, we only initialize one type of node embedding, and construct and update all types of node representations using Graph Neural Networks (GNN). We use a simplified graph convolution operation to alternate the information propagation process to increase the training efficiency and eliminate the heterogeneity of the app-library bipartite graph, thus efficiently modeling the complex high-order relationships between the app and the library. Extensive experiments on large-scale real-world datasets demonstrate that NLA-GNN achieves consistent and remarkable improvements over state-of-the-art baselines for TPL recommendation tasks." @default.
- W4313598807 created "2023-01-06" @default.
- W4313598807 creator A5053326584 @default.
- W4313598807 creator A5064794881 @default.
- W4313598807 creator A5070245791 @default.
- W4313598807 date "2023-08-01" @default.
- W4313598807 modified "2023-10-06" @default.
- W4313598807 title "Neighbor Library-Aware Graph Neural Network for Third Party Library Recommendation" @default.
- W4313598807 cites W1964968887 @default.
- W4313598807 cites W1965891547 @default.
- W4313598807 cites W1972350641 @default.
- W4313598807 cites W2027225221 @default.
- W4313598807 cites W2054141820 @default.
- W4313598807 cites W2060727319 @default.
- W4313598807 cites W2094286023 @default.
- W4313598807 cites W2108920354 @default.
- W4313598807 cites W2465807508 @default.
- W4313598807 cites W2532717356 @default.
- W4313598807 cites W2604433096 @default.
- W4313598807 cites W2605350416 @default.
- W4313598807 cites W2765843494 @default.
- W4313598807 cites W2796466931 @default.
- W4313598807 cites W2886769913 @default.
- W4313598807 cites W2894949570 @default.
- W4313598807 cites W2911126749 @default.
- W4313598807 cites W2954216446 @default.
- W4313598807 cites W2963512530 @default.
- W4313598807 cites W2967481075 @default.
- W4313598807 cites W2969657790 @default.
- W4313598807 cites W2986678597 @default.
- W4313598807 cites W2998431760 @default.
- W4313598807 cites W3010919326 @default.
- W4313598807 cites W3035143414 @default.
- W4313598807 cites W3042770487 @default.
- W4313598807 cites W3045200674 @default.
- W4313598807 cites W3088511490 @default.
- W4313598807 cites W3100278010 @default.
- W4313598807 cites W3100848837 @default.
- W4313598807 cites W3117298090 @default.
- W4313598807 cites W3189422567 @default.
- W4313598807 cites W3195252999 @default.
- W4313598807 cites W4210334834 @default.
- W4313598807 doi "https://doi.org/10.26599/tst.2022.9010042" @default.
- W4313598807 hasPublicationYear "2023" @default.
- W4313598807 type Work @default.
- W4313598807 citedByCount "1" @default.
- W4313598807 countsByYear W43135988072023 @default.
- W4313598807 crossrefType "journal-article" @default.
- W4313598807 hasAuthorship W4313598807A5053326584 @default.
- W4313598807 hasAuthorship W4313598807A5064794881 @default.
- W4313598807 hasAuthorship W4313598807A5070245791 @default.
- W4313598807 hasBestOaLocation W43135988071 @default.
- W4313598807 hasConcept C115903868 @default.
- W4313598807 hasConcept C124101348 @default.
- W4313598807 hasConcept C132525143 @default.
- W4313598807 hasConcept C14185376 @default.
- W4313598807 hasConcept C154945302 @default.
- W4313598807 hasConcept C197657726 @default.
- W4313598807 hasConcept C23123220 @default.
- W4313598807 hasConcept C41008148 @default.
- W4313598807 hasConcept C50644808 @default.
- W4313598807 hasConcept C80444323 @default.
- W4313598807 hasConceptScore W4313598807C115903868 @default.
- W4313598807 hasConceptScore W4313598807C124101348 @default.
- W4313598807 hasConceptScore W4313598807C132525143 @default.
- W4313598807 hasConceptScore W4313598807C14185376 @default.
- W4313598807 hasConceptScore W4313598807C154945302 @default.
- W4313598807 hasConceptScore W4313598807C197657726 @default.
- W4313598807 hasConceptScore W4313598807C23123220 @default.
- W4313598807 hasConceptScore W4313598807C41008148 @default.
- W4313598807 hasConceptScore W4313598807C50644808 @default.
- W4313598807 hasConceptScore W4313598807C80444323 @default.
- W4313598807 hasFunder F4320321001 @default.
- W4313598807 hasIssue "4" @default.
- W4313598807 hasLocation W43135988071 @default.
- W4313598807 hasOpenAccess W4313598807 @default.
- W4313598807 hasPrimaryLocation W43135988071 @default.
- W4313598807 hasRelatedWork W1536405386 @default.
- W4313598807 hasRelatedWork W1597238586 @default.
- W4313598807 hasRelatedWork W2086064646 @default.
- W4313598807 hasRelatedWork W2115485936 @default.
- W4313598807 hasRelatedWork W2119135658 @default.
- W4313598807 hasRelatedWork W2153015554 @default.
- W4313598807 hasRelatedWork W2349174110 @default.
- W4313598807 hasRelatedWork W2357241418 @default.
- W4313598807 hasRelatedWork W2386387936 @default.
- W4313598807 hasRelatedWork W3022131925 @default.
- W4313598807 hasVolume "28" @default.
- W4313598807 isParatext "false" @default.
- W4313598807 isRetracted "false" @default.
- W4313598807 workType "article" @default.