Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313612145> ?p ?o ?g. }
- W4313612145 endingPage "140297" @default.
- W4313612145 startingPage "140297" @default.
- W4313612145 abstract "We have trained a new machine-learning (ML) model which predicts mutual information (MI) for strongly correlated systems. This is a complex quantity, which is much more difficult to predict than one-site entropies, but carries important information about the correlation structure inside electronic systems. In this work, we replaced the expensive density matrix renormalization group (DMRG) calculations by newly trained ML model for prediction of the mutual information. We show the performance of the model on two important tasks: (a) to determine the correlation structure and (b) to determine ordering of orbitals for accurate DMRG calculations. The results are compared with the MI obtained from accurate DMRG calculations." @default.
- W4313612145 created "2023-01-07" @default.
- W4313612145 creator A5008159641 @default.
- W4313612145 creator A5029056296 @default.
- W4313612145 creator A5029632136 @default.
- W4313612145 creator A5082555697 @default.
- W4313612145 date "2023-02-01" @default.
- W4313612145 modified "2023-09-25" @default.
- W4313612145 title "Mutual information prediction for strongly correlated systems" @default.
- W4313612145 cites W1488071516 @default.
- W4313612145 cites W1984531176 @default.
- W4313612145 cites W2015115007 @default.
- W4313612145 cites W2019073626 @default.
- W4313612145 cites W2040134477 @default.
- W4313612145 cites W2040942396 @default.
- W4313612145 cites W2069560102 @default.
- W4313612145 cites W2092682448 @default.
- W4313612145 cites W2098614082 @default.
- W4313612145 cites W2263840126 @default.
- W4313612145 cites W2520819917 @default.
- W4313612145 cites W2583456228 @default.
- W4313612145 cites W2587759677 @default.
- W4313612145 cites W2803823423 @default.
- W4313612145 cites W2944637886 @default.
- W4313612145 cites W2963223188 @default.
- W4313612145 cites W3003539161 @default.
- W4313612145 cites W3009413739 @default.
- W4313612145 cites W3040937238 @default.
- W4313612145 cites W3098338513 @default.
- W4313612145 cites W3104098743 @default.
- W4313612145 cites W3106481551 @default.
- W4313612145 cites W3109094470 @default.
- W4313612145 cites W3115898397 @default.
- W4313612145 cites W3154997077 @default.
- W4313612145 cites W3204907565 @default.
- W4313612145 cites W3213211684 @default.
- W4313612145 cites W4229017516 @default.
- W4313612145 doi "https://doi.org/10.1016/j.cplett.2023.140297" @default.
- W4313612145 hasPublicationYear "2023" @default.
- W4313612145 type Work @default.
- W4313612145 citedByCount "0" @default.
- W4313612145 crossrefType "journal-article" @default.
- W4313612145 hasAuthorship W4313612145A5008159641 @default.
- W4313612145 hasAuthorship W4313612145A5029056296 @default.
- W4313612145 hasAuthorship W4313612145A5029632136 @default.
- W4313612145 hasAuthorship W4313612145A5082555697 @default.
- W4313612145 hasConcept C117220453 @default.
- W4313612145 hasConcept C119857082 @default.
- W4313612145 hasConcept C121332964 @default.
- W4313612145 hasConcept C121864883 @default.
- W4313612145 hasConcept C124101348 @default.
- W4313612145 hasConcept C147120987 @default.
- W4313612145 hasConcept C152139883 @default.
- W4313612145 hasConcept C154945302 @default.
- W4313612145 hasConcept C189394030 @default.
- W4313612145 hasConcept C2524010 @default.
- W4313612145 hasConcept C29547527 @default.
- W4313612145 hasConcept C33923547 @default.
- W4313612145 hasConcept C41008148 @default.
- W4313612145 hasConcept C62520636 @default.
- W4313612145 hasConcept C68532491 @default.
- W4313612145 hasConceptScore W4313612145C117220453 @default.
- W4313612145 hasConceptScore W4313612145C119857082 @default.
- W4313612145 hasConceptScore W4313612145C121332964 @default.
- W4313612145 hasConceptScore W4313612145C121864883 @default.
- W4313612145 hasConceptScore W4313612145C124101348 @default.
- W4313612145 hasConceptScore W4313612145C147120987 @default.
- W4313612145 hasConceptScore W4313612145C152139883 @default.
- W4313612145 hasConceptScore W4313612145C154945302 @default.
- W4313612145 hasConceptScore W4313612145C189394030 @default.
- W4313612145 hasConceptScore W4313612145C2524010 @default.
- W4313612145 hasConceptScore W4313612145C29547527 @default.
- W4313612145 hasConceptScore W4313612145C33923547 @default.
- W4313612145 hasConceptScore W4313612145C41008148 @default.
- W4313612145 hasConceptScore W4313612145C62520636 @default.
- W4313612145 hasConceptScore W4313612145C68532491 @default.
- W4313612145 hasFunder F4320306084 @default.
- W4313612145 hasFunder F4320306250 @default.
- W4313612145 hasFunder F4320321005 @default.
- W4313612145 hasFunder F4320321006 @default.
- W4313612145 hasFunder F4320332359 @default.
- W4313612145 hasFunder F4320337480 @default.
- W4313612145 hasFunder F4320337744 @default.
- W4313612145 hasFunder F4320338354 @default.
- W4313612145 hasLocation W43136121451 @default.
- W4313612145 hasLocation W43136121452 @default.
- W4313612145 hasOpenAccess W4313612145 @default.
- W4313612145 hasPrimaryLocation W43136121451 @default.
- W4313612145 hasRelatedWork W1982577535 @default.
- W4313612145 hasRelatedWork W1983614495 @default.
- W4313612145 hasRelatedWork W1984300077 @default.
- W4313612145 hasRelatedWork W2005077461 @default.
- W4313612145 hasRelatedWork W2011979667 @default.
- W4313612145 hasRelatedWork W2020172410 @default.
- W4313612145 hasRelatedWork W2025734445 @default.
- W4313612145 hasRelatedWork W2087962248 @default.
- W4313612145 hasRelatedWork W2592763824 @default.
- W4313612145 hasRelatedWork W3098211506 @default.