Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313621180> ?p ?o ?g. }
- W4313621180 endingPage "117244" @default.
- W4313621180 startingPage "117244" @default.
- W4313621180 abstract "Global climate change has led to an increase in both the frequency and magnitude of extreme events around the world, the risk of which is especially imminent in tropical regions. Developing hydrological models with better capabilities to simulate streamflow, especially peak flow, is urgently needed to facilitate water resource planning and management as well as climate change mitigation efforts in the tropics. In view of the need, this paper explores the feasibility of improving streamflow simulation performance in the tropical Kelantan River Basin (KRB) of Peninsular Malaysia through coupling a conceptual process-based hydrological model - Soil and Water Assessment Tool (SWAT) with a deep learning model - Bidirectional Long Short-Term Memory (Bi-LSTM) in two ways. All SWAT parameters were set as their default values in one hybrid model (SWAT-D-LSTM), whereas three most sensitive SWAT parameters were calibrated in the other hybrid model (SWAT-T-LSTM). Comparison of daily streamflow simulation results have shown that SWAT-T-LSTM consistently performs better than SWAT-D-LSTM as well as the stand-alone SWAT and Bi-LSTM model throughout the simulation period. Particularly, SWAT-T-LSTM performs considerably better than the other three models in simulating daily peak flow. Based on the latest projection results of five GCMs from the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) under three emission scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5), the best-performed SWAT-T-LSTM was run to assess the potential impacts of climate change on streamflow in the KRB. Ensemble assessment results have concluded that both average and extreme streamflow is much likely to increase considerably in the already wet northeast monsoon season from November to January, which has surely raised the alarm for more frequent flood occurrence in the KRB." @default.
- W4313621180 created "2023-01-07" @default.
- W4313621180 creator A5004009456 @default.
- W4313621180 creator A5019579810 @default.
- W4313621180 creator A5019813468 @default.
- W4313621180 creator A5023214008 @default.
- W4313621180 creator A5035605378 @default.
- W4313621180 creator A5083586019 @default.
- W4313621180 creator A5086092552 @default.
- W4313621180 date "2023-03-01" @default.
- W4313621180 modified "2023-10-18" @default.
- W4313621180 title "Coupling SWAT and Bi-LSTM for improving daily-scale hydro-climatic simulation and climate change impact assessment in a tropical river basin" @default.
- W4313621180 cites W1689711448 @default.
- W4313621180 cites W1993586171 @default.
- W4313621180 cites W1996210406 @default.
- W4313621180 cites W2021164813 @default.
- W4313621180 cites W2022992475 @default.
- W4313621180 cites W2039516340 @default.
- W4313621180 cites W2082413120 @default.
- W4313621180 cites W2090915513 @default.
- W4313621180 cites W2094437984 @default.
- W4313621180 cites W2129222604 @default.
- W4313621180 cites W2146577723 @default.
- W4313621180 cites W2186440592 @default.
- W4313621180 cites W2230911711 @default.
- W4313621180 cites W2279173545 @default.
- W4313621180 cites W2570501755 @default.
- W4313621180 cites W2582241554 @default.
- W4313621180 cites W2658592595 @default.
- W4313621180 cites W2741439194 @default.
- W4313621180 cites W2767834217 @default.
- W4313621180 cites W2769851728 @default.
- W4313621180 cites W2790450480 @default.
- W4313621180 cites W2792906888 @default.
- W4313621180 cites W2811396097 @default.
- W4313621180 cites W2883986738 @default.
- W4313621180 cites W2893656991 @default.
- W4313621180 cites W2898791292 @default.
- W4313621180 cites W2921650575 @default.
- W4313621180 cites W2983352457 @default.
- W4313621180 cites W2997167441 @default.
- W4313621180 cites W2999092792 @default.
- W4313621180 cites W3005197680 @default.
- W4313621180 cites W3011076983 @default.
- W4313621180 cites W3016829663 @default.
- W4313621180 cites W3022143763 @default.
- W4313621180 cites W3022677769 @default.
- W4313621180 cites W3035981841 @default.
- W4313621180 cites W3044346761 @default.
- W4313621180 cites W3046834006 @default.
- W4313621180 cites W3047298021 @default.
- W4313621180 cites W3086470909 @default.
- W4313621180 cites W3096052669 @default.
- W4313621180 cites W3104516335 @default.
- W4313621180 cites W3115518707 @default.
- W4313621180 cites W3125807057 @default.
- W4313621180 cites W3130100203 @default.
- W4313621180 cites W3138687745 @default.
- W4313621180 cites W3149045291 @default.
- W4313621180 cites W3171394146 @default.
- W4313621180 cites W3205426227 @default.
- W4313621180 cites W3217756247 @default.
- W4313621180 cites W4212937527 @default.
- W4313621180 cites W4214740551 @default.
- W4313621180 doi "https://doi.org/10.1016/j.jenvman.2023.117244" @default.
- W4313621180 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36621311" @default.
- W4313621180 hasPublicationYear "2023" @default.
- W4313621180 type Work @default.
- W4313621180 citedByCount "7" @default.
- W4313621180 countsByYear W43136211802023 @default.
- W4313621180 crossrefType "journal-article" @default.
- W4313621180 hasAuthorship W4313621180A5004009456 @default.
- W4313621180 hasAuthorship W4313621180A5019579810 @default.
- W4313621180 hasAuthorship W4313621180A5019813468 @default.
- W4313621180 hasAuthorship W4313621180A5023214008 @default.
- W4313621180 hasAuthorship W4313621180A5035605378 @default.
- W4313621180 hasAuthorship W4313621180A5083586019 @default.
- W4313621180 hasAuthorship W4313621180A5086092552 @default.
- W4313621180 hasConcept C111368507 @default.
- W4313621180 hasConcept C111874474 @default.
- W4313621180 hasConcept C126645576 @default.
- W4313621180 hasConcept C127313418 @default.
- W4313621180 hasConcept C132651083 @default.
- W4313621180 hasConcept C153823671 @default.
- W4313621180 hasConcept C168754636 @default.
- W4313621180 hasConcept C17744445 @default.
- W4313621180 hasConcept C187320778 @default.
- W4313621180 hasConcept C18903297 @default.
- W4313621180 hasConcept C205649164 @default.
- W4313621180 hasConcept C25022447 @default.
- W4313621180 hasConcept C2780623283 @default.
- W4313621180 hasConcept C2780852570 @default.
- W4313621180 hasConcept C3116431 @default.
- W4313621180 hasConcept C39432304 @default.
- W4313621180 hasConcept C49204034 @default.
- W4313621180 hasConcept C53739315 @default.
- W4313621180 hasConcept C58640448 @default.
- W4313621180 hasConcept C76886044 @default.