Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313622597> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313622597 endingPage "14" @default.
- W4313622597 startingPage "1" @default.
- W4313622597 abstract "Leaf disease in tomatoes is one of the most common and treacherous diseases. It directly affects the production of tomatoes, resulting in enormous economic loss each year. As a result, studying the detection of tomato leaf diseases is essential. To that aim, this work introduces a novel mechanism for selecting the most effective hyperparameters for improving the detection accuracy of deep CNN. Several cutting-edge CNN algorithms were examined in this study to diagnose tomato leaf diseases. The experiment is divided into three stages to find a full proof technique. A few pre-trained deep convolutional neural networks were first employed to diagnose tomato leaf diseases. The superlative combined model has then experimented with changes in the learning rate, optimizer, and classifier to discover the optimal parameters and minimize overfitting in data training. In this case, 99.31% accuracy was reached in DenseNet 121 using AdaBound Optimizer, 0.01 learning rate, and Softmax classifier. The achieved detection accuracy levels (above 99%) using various learning rates, optimizers, and classifiers were eventually tested using K-fold cross-validation to get a better and dependable detection accuracy. The results indicate that the proposed parameters and technique are efficacious in recognizing tomato leaf disease and can be used fruitfully in identifying other leaf diseases." @default.
- W4313622597 created "2023-01-07" @default.
- W4313622597 creator A5008569306 @default.
- W4313622597 creator A5020945411 @default.
- W4313622597 creator A5048991652 @default.
- W4313622597 creator A5056822683 @default.
- W4313622597 creator A5074158275 @default.
- W4313622597 creator A5079035858 @default.
- W4313622597 date "2023-01-01" @default.
- W4313622597 modified "2023-10-18" @default.
- W4313622597 title "An Efficient Technique for Recognizing Tomato Leaf Disease Based on the Most Effective Deep CNN Hyperparameters" @default.
- W4313622597 cites W1834627138 @default.
- W4313622597 cites W2194775991 @default.
- W4313622597 cites W2574887079 @default.
- W4313622597 cites W2618530766 @default.
- W4313622597 cites W2750023899 @default.
- W4313622597 cites W2758893285 @default.
- W4313622597 cites W2767329619 @default.
- W4313622597 cites W2789255992 @default.
- W4313622597 cites W2801958709 @default.
- W4313622597 cites W2893646015 @default.
- W4313622597 cites W2921029329 @default.
- W4313622597 cites W2959400106 @default.
- W4313622597 cites W2963446712 @default.
- W4313622597 cites W2979922932 @default.
- W4313622597 cites W2982381523 @default.
- W4313622597 cites W3011881104 @default.
- W4313622597 cites W3012334084 @default.
- W4313622597 cites W3014804840 @default.
- W4313622597 cites W3036609238 @default.
- W4313622597 cites W3040152568 @default.
- W4313622597 cites W3089733125 @default.
- W4313622597 cites W3203549655 @default.
- W4313622597 cites W3208373474 @default.
- W4313622597 cites W4224251752 @default.
- W4313622597 cites W4285004946 @default.
- W4313622597 doi "https://doi.org/10.33166/aetic.2023.01.001" @default.
- W4313622597 hasPublicationYear "2023" @default.
- W4313622597 type Work @default.
- W4313622597 citedByCount "2" @default.
- W4313622597 countsByYear W43136225972023 @default.
- W4313622597 crossrefType "journal-article" @default.
- W4313622597 hasAuthorship W4313622597A5008569306 @default.
- W4313622597 hasAuthorship W4313622597A5020945411 @default.
- W4313622597 hasAuthorship W4313622597A5048991652 @default.
- W4313622597 hasAuthorship W4313622597A5056822683 @default.
- W4313622597 hasAuthorship W4313622597A5074158275 @default.
- W4313622597 hasAuthorship W4313622597A5079035858 @default.
- W4313622597 hasBestOaLocation W43136225971 @default.
- W4313622597 hasConcept C108583219 @default.
- W4313622597 hasConcept C119857082 @default.
- W4313622597 hasConcept C153180895 @default.
- W4313622597 hasConcept C154945302 @default.
- W4313622597 hasConcept C188441871 @default.
- W4313622597 hasConcept C22019652 @default.
- W4313622597 hasConcept C34736171 @default.
- W4313622597 hasConcept C41008148 @default.
- W4313622597 hasConcept C50644808 @default.
- W4313622597 hasConcept C81363708 @default.
- W4313622597 hasConcept C8642999 @default.
- W4313622597 hasConcept C95623464 @default.
- W4313622597 hasConceptScore W4313622597C108583219 @default.
- W4313622597 hasConceptScore W4313622597C119857082 @default.
- W4313622597 hasConceptScore W4313622597C153180895 @default.
- W4313622597 hasConceptScore W4313622597C154945302 @default.
- W4313622597 hasConceptScore W4313622597C188441871 @default.
- W4313622597 hasConceptScore W4313622597C22019652 @default.
- W4313622597 hasConceptScore W4313622597C34736171 @default.
- W4313622597 hasConceptScore W4313622597C41008148 @default.
- W4313622597 hasConceptScore W4313622597C50644808 @default.
- W4313622597 hasConceptScore W4313622597C81363708 @default.
- W4313622597 hasConceptScore W4313622597C8642999 @default.
- W4313622597 hasConceptScore W4313622597C95623464 @default.
- W4313622597 hasIssue "1" @default.
- W4313622597 hasLocation W43136225971 @default.
- W4313622597 hasOpenAccess W4313622597 @default.
- W4313622597 hasPrimaryLocation W43136225971 @default.
- W4313622597 hasRelatedWork W2742991909 @default.
- W4313622597 hasRelatedWork W2767651786 @default.
- W4313622597 hasRelatedWork W2913997398 @default.
- W4313622597 hasRelatedWork W3099765033 @default.
- W4313622597 hasRelatedWork W3130227562 @default.
- W4313622597 hasRelatedWork W4210794429 @default.
- W4313622597 hasRelatedWork W4220996320 @default.
- W4313622597 hasRelatedWork W4283701629 @default.
- W4313622597 hasRelatedWork W4295681619 @default.
- W4313622597 hasRelatedWork W4361732492 @default.
- W4313622597 hasVolume "7" @default.
- W4313622597 isParatext "false" @default.
- W4313622597 isRetracted "false" @default.
- W4313622597 workType "article" @default.