Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313640908> ?p ?o ?g. }
- W4313640908 endingPage "338" @default.
- W4313640908 startingPage "338" @default.
- W4313640908 abstract "Carbon neutrality is becoming an important development goal for regions and countries around the world. Land-use cover/change (LUCC), especially urban growth, as a major source of carbon emissions, has been extensively studied to support carbon-neutral planning. However, studies have typically used methods of small-scale urban growth simulation to model urban agglomeration growth to assist in carbon-neutral planning, ignoring the significant characteristics of the process to achieve carbon neutrality: large-scale and long-term. This paper proposes a framework to model large-scale and long-term urban growth, which couples a quantity module and a spatial module to model the quantity and spatial allocation of urban land, respectively. This framework integrates the inertia of historical land-use change, the driving effects of the urbanization law (S-curve), and the traction of the urban agglomeration network to model the long-term quantity change of urban land. Moreover, it couples a partitioned modeling framework, spatially heterogeneous rules derived by geographically weighted regression (GWR), and quantified land-use planning orientations to build a cellular automata (CA) model to accurately allocate the urbanized cells in a large-scale spatial domain. Taking the Guangdong–Hong Kong–Macao Greater Bay Area (GHMGBA) as an example, the proposed framework is calibrated by the urban growth from 2000 to 2010 and validated by that from 2010 to 2020. The figure of merit (FoM) of the results simulated by the framework is 0.2926, and the simulated results are also assessed by some evidence, which both confirm the good performance of the framework to model large-scale and long-term urban growth. Coupling with the coefficients proposed by the Intergovernmental Panel on Climate Change (IPCC), this framework is used to project the carbon emissions caused by urban growth in the GHMGBA from 2020 to 2050. The results indicate that Guangzhou, Foshan, Huizhou, and Jiangmen are under great pressure to achieve the carbon-neutral targets in the future, while Hong Kong, Macao, Shenzhen, and Zhuhai are relatively easy to bring up to the standard. This research contributes to the ability of land-use models to simulate large-scale and long-term urban growth to predict carbon emissions and to support the carbon-neutral planning of the GHMGBA." @default.
- W4313640908 created "2023-01-07" @default.
- W4313640908 creator A5003801133 @default.
- W4313640908 creator A5014600837 @default.
- W4313640908 creator A5046552547 @default.
- W4313640908 creator A5055136222 @default.
- W4313640908 creator A5079680639 @default.
- W4313640908 date "2023-01-06" @default.
- W4313640908 modified "2023-10-15" @default.
- W4313640908 title "Early Warning of the Carbon-Neutral Pressure Caused by Urban Agglomeration Growth: Evidence from an Urban Network-Based Cellular Automata Model in the Greater Bay Area" @default.
- W4313640908 cites W1964890944 @default.
- W4313640908 cites W1968885079 @default.
- W4313640908 cites W1973836017 @default.
- W4313640908 cites W2003974675 @default.
- W4313640908 cites W2010524426 @default.
- W4313640908 cites W2016500599 @default.
- W4313640908 cites W2017801654 @default.
- W4313640908 cites W2031729134 @default.
- W4313640908 cites W2039357377 @default.
- W4313640908 cites W2054130696 @default.
- W4313640908 cites W2055055403 @default.
- W4313640908 cites W2057204588 @default.
- W4313640908 cites W2063434188 @default.
- W4313640908 cites W2072099952 @default.
- W4313640908 cites W2076598343 @default.
- W4313640908 cites W2087432101 @default.
- W4313640908 cites W2089892649 @default.
- W4313640908 cites W2097704545 @default.
- W4313640908 cites W2101260014 @default.
- W4313640908 cites W2104896032 @default.
- W4313640908 cites W2119980064 @default.
- W4313640908 cites W2121393448 @default.
- W4313640908 cites W2130256070 @default.
- W4313640908 cites W2151389381 @default.
- W4313640908 cites W2157918818 @default.
- W4313640908 cites W2162686899 @default.
- W4313640908 cites W2165891344 @default.
- W4313640908 cites W2171099232 @default.
- W4313640908 cites W2171730709 @default.
- W4313640908 cites W2192545109 @default.
- W4313640908 cites W2288294253 @default.
- W4313640908 cites W2553838540 @default.
- W4313640908 cites W2588804479 @default.
- W4313640908 cites W2604003754 @default.
- W4313640908 cites W2766529052 @default.
- W4313640908 cites W2782099070 @default.
- W4313640908 cites W2782864576 @default.
- W4313640908 cites W2799471905 @default.
- W4313640908 cites W2897388261 @default.
- W4313640908 cites W2898946526 @default.
- W4313640908 cites W2903825964 @default.
- W4313640908 cites W2909300085 @default.
- W4313640908 cites W2915602361 @default.
- W4313640908 cites W2928888837 @default.
- W4313640908 cites W2930662427 @default.
- W4313640908 cites W2963314801 @default.
- W4313640908 cites W2991033599 @default.
- W4313640908 cites W2999324124 @default.
- W4313640908 cites W3004598704 @default.
- W4313640908 cites W3016681676 @default.
- W4313640908 cites W3020413105 @default.
- W4313640908 cites W3046315610 @default.
- W4313640908 cites W3092992550 @default.
- W4313640908 cites W3095123074 @default.
- W4313640908 cites W3107961750 @default.
- W4313640908 cites W3109268000 @default.
- W4313640908 cites W3122928643 @default.
- W4313640908 cites W3129700906 @default.
- W4313640908 cites W3132679512 @default.
- W4313640908 cites W3137446047 @default.
- W4313640908 cites W3149573918 @default.
- W4313640908 cites W3165195663 @default.
- W4313640908 cites W3172813651 @default.
- W4313640908 cites W3172874949 @default.
- W4313640908 cites W3198702538 @default.
- W4313640908 cites W3205589517 @default.
- W4313640908 cites W4200114668 @default.
- W4313640908 cites W4206697306 @default.
- W4313640908 cites W4210377311 @default.
- W4313640908 cites W4223578275 @default.
- W4313640908 cites W4248744338 @default.
- W4313640908 cites W4280641813 @default.
- W4313640908 cites W4293062494 @default.
- W4313640908 cites W4297008500 @default.
- W4313640908 cites W4303684132 @default.
- W4313640908 cites W4306181166 @default.
- W4313640908 cites W747777283 @default.
- W4313640908 doi "https://doi.org/10.3390/rs15020338" @default.
- W4313640908 hasPublicationYear "2023" @default.
- W4313640908 type Work @default.
- W4313640908 citedByCount "1" @default.
- W4313640908 countsByYear W43136409082023 @default.
- W4313640908 crossrefType "journal-article" @default.
- W4313640908 hasAuthorship W4313640908A5003801133 @default.
- W4313640908 hasAuthorship W4313640908A5014600837 @default.
- W4313640908 hasAuthorship W4313640908A5046552547 @default.
- W4313640908 hasAuthorship W4313640908A5055136222 @default.
- W4313640908 hasAuthorship W4313640908A5079680639 @default.