Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313641226> ?p ?o ?g. }
- W4313641226 endingPage "1532" @default.
- W4313641226 startingPage "1522" @default.
- W4313641226 abstract "In the electrocatalytic nitrogen reduction reaction (NRR), nitrogen (N2) is chemically inert, it is difficult to break the triple bond, and the subsequent protonation step is very challenging. Suitable catalysts with high selectivity and high activity are needed to promote the electrocatalytic NRR. We screen a large number of clusters composed of three metal atoms embedded into a two-dimensional metal nitride, W2N3, with a N vacancy, and calculate the reaction energetics. The VNiCu cluster has the best catalytic activity among all the catalysts proposed so far. The Fe3 and Fe2Co clusters are excellent catalysts as well. In all cases, spin polarization is needed to observe the catalytic effect. We establish the optimal NRR path and confirm that it remains unchanged in the presence of a solvent. We find three groups of descriptors that can well predict the materials’ properties and exhibit linear relationships with the NRR limiting potential." @default.
- W4313641226 created "2023-01-07" @default.
- W4313641226 creator A5004635944 @default.
- W4313641226 creator A5016927358 @default.
- W4313641226 creator A5047287577 @default.
- W4313641226 creator A5061633372 @default.
- W4313641226 creator A5066003865 @default.
- W4313641226 date "2023-01-06" @default.
- W4313641226 modified "2023-10-18" @default.
- W4313641226 title "Prediction of Three-Metal Cluster Catalysts on Two-Dimensional W<sub>2</sub>N<sub>3</sub> Support with Integrated Descriptors for Electrocatalytic Nitrogen Reduction" @default.
- W4313641226 cites W1480171480 @default.
- W4313641226 cites W1904930046 @default.
- W4313641226 cites W1964690210 @default.
- W4313641226 cites W1970127494 @default.
- W4313641226 cites W1979544533 @default.
- W4313641226 cites W1998866028 @default.
- W4313641226 cites W2015865951 @default.
- W4313641226 cites W2030200666 @default.
- W4313641226 cites W2033446664 @default.
- W4313641226 cites W2049079467 @default.
- W4313641226 cites W2058122340 @default.
- W4313641226 cites W2060023027 @default.
- W4313641226 cites W2069970015 @default.
- W4313641226 cites W2084834275 @default.
- W4313641226 cites W2087585288 @default.
- W4313641226 cites W2092157292 @default.
- W4313641226 cites W2156809317 @default.
- W4313641226 cites W2269800614 @default.
- W4313641226 cites W2282942319 @default.
- W4313641226 cites W2314274336 @default.
- W4313641226 cites W2322232911 @default.
- W4313641226 cites W2460396937 @default.
- W4313641226 cites W2581493313 @default.
- W4313641226 cites W2735002352 @default.
- W4313641226 cites W2791210137 @default.
- W4313641226 cites W2799648054 @default.
- W4313641226 cites W2801820474 @default.
- W4313641226 cites W2803729875 @default.
- W4313641226 cites W2810211945 @default.
- W4313641226 cites W2811283851 @default.
- W4313641226 cites W2883391438 @default.
- W4313641226 cites W2892530092 @default.
- W4313641226 cites W2895283837 @default.
- W4313641226 cites W2898382870 @default.
- W4313641226 cites W2902208074 @default.
- W4313641226 cites W2904144306 @default.
- W4313641226 cites W2945801890 @default.
- W4313641226 cites W2947157467 @default.
- W4313641226 cites W2947517642 @default.
- W4313641226 cites W2953366342 @default.
- W4313641226 cites W295558009 @default.
- W4313641226 cites W2969028050 @default.
- W4313641226 cites W2983005301 @default.
- W4313641226 cites W2990354746 @default.
- W4313641226 cites W2994700550 @default.
- W4313641226 cites W2999667825 @default.
- W4313641226 cites W3011601510 @default.
- W4313641226 cites W3012252546 @default.
- W4313641226 cites W3025152005 @default.
- W4313641226 cites W3031390118 @default.
- W4313641226 cites W3034412283 @default.
- W4313641226 cites W3035570871 @default.
- W4313641226 cites W3036848540 @default.
- W4313641226 cites W3038025793 @default.
- W4313641226 cites W3038046745 @default.
- W4313641226 cites W3038695588 @default.
- W4313641226 cites W3039783515 @default.
- W4313641226 cites W3048370369 @default.
- W4313641226 cites W3082416915 @default.
- W4313641226 cites W3101544822 @default.
- W4313641226 cites W3104452568 @default.
- W4313641226 cites W3120310074 @default.
- W4313641226 cites W3133651177 @default.
- W4313641226 cites W3133981092 @default.
- W4313641226 cites W3174840187 @default.
- W4313641226 cites W3213868560 @default.
- W4313641226 cites W4214861401 @default.
- W4313641226 cites W4238290602 @default.
- W4313641226 doi "https://doi.org/10.1021/acsnano.2c10607" @default.
- W4313641226 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36606598" @default.
- W4313641226 hasPublicationYear "2023" @default.
- W4313641226 type Work @default.
- W4313641226 citedByCount "6" @default.
- W4313641226 countsByYear W43136412262023 @default.
- W4313641226 crossrefType "journal-article" @default.
- W4313641226 hasAuthorship W4313641226A5004635944 @default.
- W4313641226 hasAuthorship W4313641226A5016927358 @default.
- W4313641226 hasAuthorship W4313641226A5047287577 @default.
- W4313641226 hasAuthorship W4313641226A5061633372 @default.
- W4313641226 hasAuthorship W4313641226A5066003865 @default.
- W4313641226 hasConcept C114221277 @default.
- W4313641226 hasConcept C118792377 @default.
- W4313641226 hasConcept C127413603 @default.
- W4313641226 hasConcept C145148216 @default.
- W4313641226 hasConcept C147789679 @default.
- W4313641226 hasConcept C154256306 @default.
- W4313641226 hasConcept C159467904 @default.
- W4313641226 hasConcept C161790260 @default.