Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313641431> ?p ?o ?g. }
- W4313641431 endingPage "335" @default.
- W4313641431 startingPage "335" @default.
- W4313641431 abstract "Fire severity, which quantifies the degree of organic matter consumption, is an important component of the fire regime. High-severity fires have major ecological implications, affecting carbon uptake, storage and emissions, soil nutrients, and plant regeneration, among other ecosystem services. Accordingly, spatially explicit maps of the fire severity are required to develop improved tools to manage and restore the most damaged areas. The aim of this study is to develop spatially explicit maps of the field-based fire severity (composite burn index—CBI) from different spectral indices derived from Sentinel 2A images and using several regression models. The study areas are two recent large fires that occurred in Tunisia in the summer of 2021. We employed different spectral severity indices derived from the normalized burn ratio (NBR): differenced NBR (dNBR), relative differenced NBR (RdNBR), and relativized burn Ratio (RBR). In addition, we calculated the burned area index for Sentinel 2 (BAIS2) and the thermal anomaly index (TAI). Different tree decision models (i.e., the recursive partitioning regression method [RPART], bagging regression trees [Bagging], and boosted regression trees [BRT]), as well as a generalized additive model [GAM]), were applied to predict the CBI. The main results indicated that RBR, followed by dNBR, were the most important spectral severity indices for predicting the field-based CBI. Moreover, BRT was the best regression model, explaining 92% of the CBI variance using the training set of points and 88% when using the validation set. These results suggested the adequacy of RBR index derived from Sentinel 2A for assessing and mapping forest fire severity in Mediterranean forests. These spatially explicit maps of field-based CBI could help improve post-fire recovery and restoration efforts." @default.
- W4313641431 created "2023-01-07" @default.
- W4313641431 creator A5007586184 @default.
- W4313641431 creator A5020998009 @default.
- W4313641431 creator A5050071651 @default.
- W4313641431 creator A5050090183 @default.
- W4313641431 date "2023-01-05" @default.
- W4313641431 modified "2023-10-18" @default.
- W4313641431 title "Predicting Spatially Explicit Composite Burn Index (CBI) from Different Spectral Indices Derived from Sentinel 2A: A Case of Study in Tunisia" @default.
- W4313641431 cites W1413645801 @default.
- W4313641431 cites W1521897025 @default.
- W4313641431 cites W1542549258 @default.
- W4313641431 cites W1543571473 @default.
- W4313641431 cites W1652361745 @default.
- W4313641431 cites W1831050183 @default.
- W4313641431 cites W1967049547 @default.
- W4313641431 cites W1983734514 @default.
- W4313641431 cites W1984209128 @default.
- W4313641431 cites W1987567971 @default.
- W4313641431 cites W1992050944 @default.
- W4313641431 cites W2002901506 @default.
- W4313641431 cites W2010175410 @default.
- W4313641431 cites W2022974530 @default.
- W4313641431 cites W2038057313 @default.
- W4313641431 cites W2040403349 @default.
- W4313641431 cites W2052005839 @default.
- W4313641431 cites W2052994861 @default.
- W4313641431 cites W2075390262 @default.
- W4313641431 cites W2077833420 @default.
- W4313641431 cites W2099534828 @default.
- W4313641431 cites W2106444163 @default.
- W4313641431 cites W2107564481 @default.
- W4313641431 cites W2110306174 @default.
- W4313641431 cites W2113242619 @default.
- W4313641431 cites W2115568725 @default.
- W4313641431 cites W2118247391 @default.
- W4313641431 cites W2129775069 @default.
- W4313641431 cites W2133059825 @default.
- W4313641431 cites W2134046001 @default.
- W4313641431 cites W2134391310 @default.
- W4313641431 cites W2134814598 @default.
- W4313641431 cites W2134963560 @default.
- W4313641431 cites W2135695572 @default.
- W4313641431 cites W2144059664 @default.
- W4313641431 cites W2144230836 @default.
- W4313641431 cites W2148137306 @default.
- W4313641431 cites W2149650508 @default.
- W4313641431 cites W2162953324 @default.
- W4313641431 cites W2166629676 @default.
- W4313641431 cites W2549161686 @default.
- W4313641431 cites W2604271816 @default.
- W4313641431 cites W2737778496 @default.
- W4313641431 cites W2753503743 @default.
- W4313641431 cites W2777766352 @default.
- W4313641431 cites W2790091849 @default.
- W4313641431 cites W2887293753 @default.
- W4313641431 cites W2893868008 @default.
- W4313641431 cites W2913953825 @default.
- W4313641431 cites W2963394066 @default.
- W4313641431 cites W3005928150 @default.
- W4313641431 cites W3011344217 @default.
- W4313641431 cites W3017773087 @default.
- W4313641431 cites W3022794580 @default.
- W4313641431 cites W3023713374 @default.
- W4313641431 cites W3034650620 @default.
- W4313641431 cites W3036112923 @default.
- W4313641431 cites W3039971227 @default.
- W4313641431 cites W3092608801 @default.
- W4313641431 cites W3094623573 @default.
- W4313641431 cites W3164763357 @default.
- W4313641431 cites W3164972959 @default.
- W4313641431 cites W3199111613 @default.
- W4313641431 cites W3200715921 @default.
- W4313641431 cites W4212883601 @default.
- W4313641431 cites W4225784124 @default.
- W4313641431 cites W4283728471 @default.
- W4313641431 doi "https://doi.org/10.3390/rs15020335" @default.
- W4313641431 hasPublicationYear "2023" @default.
- W4313641431 type Work @default.
- W4313641431 citedByCount "1" @default.
- W4313641431 countsByYear W43136414312023 @default.
- W4313641431 crossrefType "journal-article" @default.
- W4313641431 hasAuthorship W4313641431A5007586184 @default.
- W4313641431 hasAuthorship W4313641431A5020998009 @default.
- W4313641431 hasAuthorship W4313641431A5050071651 @default.
- W4313641431 hasAuthorship W4313641431A5050090183 @default.
- W4313641431 hasBestOaLocation W43136414311 @default.
- W4313641431 hasConcept C105795698 @default.
- W4313641431 hasConcept C136764020 @default.
- W4313641431 hasConcept C152877465 @default.
- W4313641431 hasConcept C2777382242 @default.
- W4313641431 hasConcept C33923547 @default.
- W4313641431 hasConcept C39432304 @default.
- W4313641431 hasConcept C41008148 @default.
- W4313641431 hasConcept C83546350 @default.
- W4313641431 hasConceptScore W4313641431C105795698 @default.
- W4313641431 hasConceptScore W4313641431C136764020 @default.
- W4313641431 hasConceptScore W4313641431C152877465 @default.