Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313641632> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313641632 abstract "Introduction Melanoma is the fifth most common cancer in US, and the incidence is increasing 1.4% annually. The overall survival rate for early-stage disease is 99.4%. However, melanoma can recur years later (in the same region of the body or as distant metastasis), and results in a dramatically lower survival rate. Currently there is no reliable method to predict tumor recurrence and metastasis on early primary tumor histological images. Methods To identify rapid, accurate, and cost-effective predictors of metastasis and survival, in this work, we applied various interpretable machine learning approaches to analyze melanoma histopathological H&E images. The result is a set of image features that can help clinicians identify high-risk-of-metastasis patients for increased clinical follow-up and precision treatment. We use simple models (i.e., logarithmic classification and KNN) and “human-interpretable” measures of cell morphology and tissue architecture (e.g., cell size, staining intensity, and cell density) to predict the melanoma survival on public and local Stage I–III cohorts as well as the metastasis risk on a local cohort. Results We use penalized survival regression to limit features available to downstream classifiers and investigate the utility of convolutional neural networks in isolating tumor regions to focus morphology extraction on only the tumor region. This approach allows us to predict survival and metastasis with a maximum F1 score of 0.72 and 0.73, respectively, and to visualize several high-risk cell morphologies. Discussion This lays the foundation for future work, which will focus on using our interpretable pipeline to predict metastasis in Stage I & II melanoma." @default.
- W4313641632 created "2023-01-07" @default.
- W4313641632 creator A5020603910 @default.
- W4313641632 creator A5040985137 @default.
- W4313641632 creator A5053089219 @default.
- W4313641632 creator A5073501391 @default.
- W4313641632 creator A5080644696 @default.
- W4313641632 date "2023-01-06" @default.
- W4313641632 modified "2023-09-26" @default.
- W4313641632 title "Predicting melanoma survival and metastasis with interpretable histopathological features and machine learning models" @default.
- W4313641632 cites W2071947116 @default.
- W4313641632 cites W2076145263 @default.
- W4313641632 cites W2078197336 @default.
- W4313641632 cites W2079854108 @default.
- W4313641632 cites W2097117768 @default.
- W4313641632 cites W2102571808 @default.
- W4313641632 cites W2132162500 @default.
- W4313641632 cites W2157076315 @default.
- W4313641632 cites W2317918145 @default.
- W4313641632 cites W2329674354 @default.
- W4313641632 cites W2502228174 @default.
- W4313641632 cites W2559024717 @default.
- W4313641632 cites W2592451861 @default.
- W4313641632 cites W2760946358 @default.
- W4313641632 cites W2766845401 @default.
- W4313641632 cites W2808814350 @default.
- W4313641632 cites W2885924088 @default.
- W4313641632 cites W2941734713 @default.
- W4313641632 cites W2943229739 @default.
- W4313641632 cites W2952481429 @default.
- W4313641632 cites W2981358604 @default.
- W4313641632 cites W2989828273 @default.
- W4313641632 cites W2990696380 @default.
- W4313641632 cites W2998141119 @default.
- W4313641632 cites W3009926465 @default.
- W4313641632 cites W3015636293 @default.
- W4313641632 cites W3030889987 @default.
- W4313641632 cites W3035290865 @default.
- W4313641632 cites W3100296314 @default.
- W4313641632 cites W3208377458 @default.
- W4313641632 cites W4225123939 @default.
- W4313641632 cites W4226116219 @default.
- W4313641632 cites W4242289937 @default.
- W4313641632 cites W4295078079 @default.
- W4313641632 doi "https://doi.org/10.3389/fmed.2022.1029227" @default.
- W4313641632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36687402" @default.
- W4313641632 hasPublicationYear "2023" @default.
- W4313641632 type Work @default.
- W4313641632 citedByCount "0" @default.
- W4313641632 crossrefType "journal-article" @default.
- W4313641632 hasAuthorship W4313641632A5020603910 @default.
- W4313641632 hasAuthorship W4313641632A5040985137 @default.
- W4313641632 hasAuthorship W4313641632A5053089219 @default.
- W4313641632 hasAuthorship W4313641632A5073501391 @default.
- W4313641632 hasAuthorship W4313641632A5080644696 @default.
- W4313641632 hasBestOaLocation W43136416321 @default.
- W4313641632 hasConcept C10515644 @default.
- W4313641632 hasConcept C119857082 @default.
- W4313641632 hasConcept C121608353 @default.
- W4313641632 hasConcept C126322002 @default.
- W4313641632 hasConcept C143998085 @default.
- W4313641632 hasConcept C154945302 @default.
- W4313641632 hasConcept C2777658100 @default.
- W4313641632 hasConcept C2779013556 @default.
- W4313641632 hasConcept C41008148 @default.
- W4313641632 hasConcept C502942594 @default.
- W4313641632 hasConcept C71924100 @default.
- W4313641632 hasConcept C72563966 @default.
- W4313641632 hasConceptScore W4313641632C10515644 @default.
- W4313641632 hasConceptScore W4313641632C119857082 @default.
- W4313641632 hasConceptScore W4313641632C121608353 @default.
- W4313641632 hasConceptScore W4313641632C126322002 @default.
- W4313641632 hasConceptScore W4313641632C143998085 @default.
- W4313641632 hasConceptScore W4313641632C154945302 @default.
- W4313641632 hasConceptScore W4313641632C2777658100 @default.
- W4313641632 hasConceptScore W4313641632C2779013556 @default.
- W4313641632 hasConceptScore W4313641632C41008148 @default.
- W4313641632 hasConceptScore W4313641632C502942594 @default.
- W4313641632 hasConceptScore W4313641632C71924100 @default.
- W4313641632 hasConceptScore W4313641632C72563966 @default.
- W4313641632 hasLocation W43136416321 @default.
- W4313641632 hasLocation W43136416322 @default.
- W4313641632 hasLocation W43136416323 @default.
- W4313641632 hasOpenAccess W4313641632 @default.
- W4313641632 hasPrimaryLocation W43136416321 @default.
- W4313641632 hasRelatedWork W2021968456 @default.
- W4313641632 hasRelatedWork W2068861579 @default.
- W4313641632 hasRelatedWork W2412245334 @default.
- W4313641632 hasRelatedWork W2603773853 @default.
- W4313641632 hasRelatedWork W2748952813 @default.
- W4313641632 hasRelatedWork W2899084033 @default.
- W4313641632 hasRelatedWork W2961085424 @default.
- W4313641632 hasRelatedWork W2981372661 @default.
- W4313641632 hasRelatedWork W3074585435 @default.
- W4313641632 hasRelatedWork W4306674287 @default.
- W4313641632 hasVolume "9" @default.
- W4313641632 isParatext "false" @default.
- W4313641632 isRetracted "false" @default.
- W4313641632 workType "article" @default.