Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313642753> ?p ?o ?g. }
- W4313642753 endingPage "110508" @default.
- W4313642753 startingPage "110508" @default.
- W4313642753 abstract "Nonlinear geometries and cross-sectional asymmetry can be among the most critical contributing factors affecting the performance and stability of composite shafts. The influence of these factors, which should be devoted to particular attention in the design of these systems and have not been investigated yet, are evaluated analytically in this study. The shaft is simply supported, made of orthotropic multi-layers, and spinning at a constant speed. To express the nonlinear system’s behavior, which is due to the large amplitude of the vibrations, it is assumed that the shaft is under the stretching assumption. Moreover, a rectangular cross-section is used to model the asymmetry that results in parametric excitation in the system. To accurately investigate the behavior of composite material, an optimal lay-up is employed. The gyroscopic coupling is included because of Rayleigh beam theory, and Euler’s angles are employed to achieve the angular velocities. The analytical study of the parametrically excited system, obtained by the method of multiple scales, is performed in two categories of resonant and nonresonant cases. In the nonresonant case, the analytical investigation suggests that the asymmetric shaft behaves like a symmetric one therefore, the parametric excitations do not have a significant impact. This claim is confirmed by numerical results. Also, the presence of the gyroscopic coupling and hollowness of the shaft causes the beating phenomenon in the system. However, in the resonant case, the presence of parametric excitation plays a pivotal role. The results also show that under certain conditions and despite the presence of damping, asymmetric balanced rotors can have a nontrivial stable amplitude. This response exists as long as the parametric excitation effects dominate the damping effects. Although damping reduces the vibrations’ amplitude, it can improve the stability of the system and eliminates unstable responses. Furthermore, the time response and frequency response curve of the system is carefully evaluated for various geometric design parameters and operation speed. Depending on the operating speed, the system can experience supercritical or subcritical pitchfork bifurcation. In addition, a detailed description of the system’s Campbell’s diagram, damping effect, and bifurcation is provided. Furthermore, it is proved that internal resonance cannot occur in the system. The accuracy of the analytical responses of the resonant case is compared with numerical ones. Stability of trivial and nontrivial responses is discussed in the time response and phase portrait of the system simultaneously. Finally, in the undamped system, multi-frequency responses are appeared as homoclinic and heteroclinic closed orbits." @default.
- W4313642753 created "2023-01-07" @default.
- W4313642753 creator A5019812440 @default.
- W4313642753 creator A5036229385 @default.
- W4313642753 creator A5059612933 @default.
- W4313642753 creator A5063880965 @default.
- W4313642753 date "2023-03-01" @default.
- W4313642753 modified "2023-10-02" @default.
- W4313642753 title "Parametric resonance and bifurcation analysis of thin-walled asymmetric gyroscopic composite shafts: An asymptotic study" @default.
- W4313642753 cites W1990782958 @default.
- W4313642753 cites W2023699955 @default.
- W4313642753 cites W2033795725 @default.
- W4313642753 cites W2041419597 @default.
- W4313642753 cites W2056771701 @default.
- W4313642753 cites W2075081902 @default.
- W4313642753 cites W2253191394 @default.
- W4313642753 cites W2498018536 @default.
- W4313642753 cites W2539909488 @default.
- W4313642753 cites W2568928062 @default.
- W4313642753 cites W2601831573 @default.
- W4313642753 cites W2622098396 @default.
- W4313642753 cites W2769599523 @default.
- W4313642753 cites W2770535203 @default.
- W4313642753 cites W2788911666 @default.
- W4313642753 cites W2790573252 @default.
- W4313642753 cites W2793754899 @default.
- W4313642753 cites W2803259606 @default.
- W4313642753 cites W2887386118 @default.
- W4313642753 cites W2900903751 @default.
- W4313642753 cites W2918956643 @default.
- W4313642753 cites W2923195414 @default.
- W4313642753 cites W2971895348 @default.
- W4313642753 cites W2978446313 @default.
- W4313642753 cites W2979660251 @default.
- W4313642753 cites W2983125400 @default.
- W4313642753 cites W2986406536 @default.
- W4313642753 cites W2986833345 @default.
- W4313642753 cites W2987431232 @default.
- W4313642753 cites W2990876886 @default.
- W4313642753 cites W3003767101 @default.
- W4313642753 cites W3010720048 @default.
- W4313642753 cites W3018814135 @default.
- W4313642753 cites W3087581491 @default.
- W4313642753 cites W3087668360 @default.
- W4313642753 cites W3089184411 @default.
- W4313642753 cites W3170518190 @default.
- W4313642753 cites W4200366503 @default.
- W4313642753 cites W4200470977 @default.
- W4313642753 cites W4206784390 @default.
- W4313642753 cites W4214558321 @default.
- W4313642753 cites W4225690844 @default.
- W4313642753 cites W4296907055 @default.
- W4313642753 cites W4309633987 @default.
- W4313642753 doi "https://doi.org/10.1016/j.tws.2022.110508" @default.
- W4313642753 hasPublicationYear "2023" @default.
- W4313642753 type Work @default.
- W4313642753 citedByCount "0" @default.
- W4313642753 crossrefType "journal-article" @default.
- W4313642753 hasAuthorship W4313642753A5019812440 @default.
- W4313642753 hasAuthorship W4313642753A5036229385 @default.
- W4313642753 hasAuthorship W4313642753A5059612933 @default.
- W4313642753 hasAuthorship W4313642753A5063880965 @default.
- W4313642753 hasConcept C105795698 @default.
- W4313642753 hasConcept C109214941 @default.
- W4313642753 hasConcept C117251300 @default.
- W4313642753 hasConcept C120665830 @default.
- W4313642753 hasConcept C121332964 @default.
- W4313642753 hasConcept C131336679 @default.
- W4313642753 hasConcept C135628077 @default.
- W4313642753 hasConcept C139210041 @default.
- W4313642753 hasConcept C155675718 @default.
- W4313642753 hasConcept C158488048 @default.
- W4313642753 hasConcept C158622935 @default.
- W4313642753 hasConcept C164466805 @default.
- W4313642753 hasConcept C198394728 @default.
- W4313642753 hasConcept C24890656 @default.
- W4313642753 hasConcept C2781349735 @default.
- W4313642753 hasConcept C33923547 @default.
- W4313642753 hasConcept C38976095 @default.
- W4313642753 hasConcept C40678858 @default.
- W4313642753 hasConcept C57879066 @default.
- W4313642753 hasConcept C62520636 @default.
- W4313642753 hasConcept C74650414 @default.
- W4313642753 hasConcept C83581075 @default.
- W4313642753 hasConcept C97355855 @default.
- W4313642753 hasConceptScore W4313642753C105795698 @default.
- W4313642753 hasConceptScore W4313642753C109214941 @default.
- W4313642753 hasConceptScore W4313642753C117251300 @default.
- W4313642753 hasConceptScore W4313642753C120665830 @default.
- W4313642753 hasConceptScore W4313642753C121332964 @default.
- W4313642753 hasConceptScore W4313642753C131336679 @default.
- W4313642753 hasConceptScore W4313642753C135628077 @default.
- W4313642753 hasConceptScore W4313642753C139210041 @default.
- W4313642753 hasConceptScore W4313642753C155675718 @default.
- W4313642753 hasConceptScore W4313642753C158488048 @default.
- W4313642753 hasConceptScore W4313642753C158622935 @default.
- W4313642753 hasConceptScore W4313642753C164466805 @default.
- W4313642753 hasConceptScore W4313642753C198394728 @default.