Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313642997> ?p ?o ?g. }
- W4313642997 endingPage "338" @default.
- W4313642997 startingPage "303" @default.
- W4313642997 abstract "Elastic properties of highly ordered 3D superlattices of metal nanocrystals are deduced from nanoindentation measurements microscope. Chapter 4 demonstrates the simultaneous growth of interfacial and precipitated 3D superlattices. For the precipitated 3D superlattices characterized by a thickness larger than 1 μm, the Oliver and Pharr model is used to determine the elastic moduli, whose range is measured in GPa and which decrease with larger nanocrystal size. For the interfacial 3D superlattices, a plate model is applied in addition to the Oliver and Pharr model and confirms independently that the interfacial films are very soft based on Young's modulus value in the range of MPa. These changes in the Young's modulus are related to the 3D superlattice growth mechanism. Furthermore, using single domain and polycrystalline nanocrystals as building blocks, the stiffness of 3D superlattices can be tuned upon change in relative amounts of single and polycrystalline nanocrystals. The Young's modulus and hardness of fcc Au 3D superlattices obtained out of equilibrium are in the range of few tenths of MPa to a few GPa. They decrease with increasing nanocrystal size, depending on the number of carbon atoms of the ligand chain length ( n ) and the solvent vapor pressure during the solvent evaporation process. This trend is attributed to a change in the conformation of flexible ligands with n and to free thiol containing molecules trapped in the 3D superlattice lattices. A hierarchical mechanical behavior of thick nanocrystal 3D superlattices induced by the crystalline structure (nanocrystallinity) or by the length of the coating agent of Co nanocrystals as building blocks. Increasing the nanocrystal shape anisotropy of Co nanocrystals through the control of their nanocrystallinity induces a higher level of ordering with both translational and orientational alignment of nanocrystals within the 3D superlattices. The hierarchy, i.e. from the atomic lattice within the nanocrystals to the nanocrystal superlattice within 3D superlattice, is correlated with marked changes in the Young's modulus of 3D superlattices. It increases from amorphous-Co, to ε - Co and to hcp-Co, respectively. Moreover, for 3D superlattices of amorphous-Co nanocrystals, the Young's modulus decreases by 1 order of magnitude by reducing the alkyl chain length of the ligands coated on Co nanocrystals from C 18 (oleic acid) to C 12 (lauric acid). Very surprisingly, with Ag nanocrystals as building blocks, the Young moduli markedly decreases compared to Co and Au nanocrystal assemblies. The mesoscopic features of Co nanoparticles deposited on a substrate marked change with the size distribution of nanoparticles." @default.
- W4313642997 created "2023-01-07" @default.
- W4313642997 date "2023-01-06" @default.
- W4313642997 modified "2023-10-02" @default.
- W4313642997 title "Mechanical Properties of 3D Superlattices" @default.
- W4313642997 cites W1965225156 @default.
- W4313642997 cites W1967790580 @default.
- W4313642997 cites W1980537896 @default.
- W4313642997 cites W1983928380 @default.
- W4313642997 cites W1988868791 @default.
- W4313642997 cites W1996670893 @default.
- W4313642997 cites W1996860579 @default.
- W4313642997 cites W2001372852 @default.
- W4313642997 cites W2002680927 @default.
- W4313642997 cites W2015042066 @default.
- W4313642997 cites W2026440318 @default.
- W4313642997 cites W2030873045 @default.
- W4313642997 cites W2032895152 @default.
- W4313642997 cites W2038453856 @default.
- W4313642997 cites W2039272516 @default.
- W4313642997 cites W2039444501 @default.
- W4313642997 cites W2051166244 @default.
- W4313642997 cites W2052412849 @default.
- W4313642997 cites W2056662113 @default.
- W4313642997 cites W2067527342 @default.
- W4313642997 cites W2069742881 @default.
- W4313642997 cites W2073013530 @default.
- W4313642997 cites W2074452951 @default.
- W4313642997 cites W2085352248 @default.
- W4313642997 cites W2086430025 @default.
- W4313642997 cites W2086933933 @default.
- W4313642997 cites W2089300375 @default.
- W4313642997 cites W2090765164 @default.
- W4313642997 cites W2092348288 @default.
- W4313642997 cites W2111405346 @default.
- W4313642997 cites W2115406371 @default.
- W4313642997 cites W2119034189 @default.
- W4313642997 cites W2124817079 @default.
- W4313642997 cites W2130539738 @default.
- W4313642997 cites W2135426122 @default.
- W4313642997 cites W2261923381 @default.
- W4313642997 cites W2314955530 @default.
- W4313642997 cites W2316438424 @default.
- W4313642997 cites W2317047034 @default.
- W4313642997 cites W2321281175 @default.
- W4313642997 cites W2322797970 @default.
- W4313642997 cites W2324692769 @default.
- W4313642997 cites W2325755055 @default.
- W4313642997 cites W2326440853 @default.
- W4313642997 cites W2327138964 @default.
- W4313642997 cites W2331751718 @default.
- W4313642997 cites W2334633170 @default.
- W4313642997 cites W2334873940 @default.
- W4313642997 cites W2335668269 @default.
- W4313642997 cites W2338138556 @default.
- W4313642997 cites W2515286324 @default.
- W4313642997 cites W2743732707 @default.
- W4313642997 cites W2915438375 @default.
- W4313642997 cites W3098616087 @default.
- W4313642997 cites W42395285 @default.
- W4313642997 doi "https://doi.org/10.1002/9783527344796.ch12" @default.
- W4313642997 hasPublicationYear "2023" @default.
- W4313642997 type Work @default.
- W4313642997 citedByCount "0" @default.
- W4313642997 crossrefType "other" @default.
- W4313642997 hasConcept C105382558 @default.
- W4313642997 hasConcept C121332964 @default.
- W4313642997 hasConcept C137637335 @default.
- W4313642997 hasConcept C159467904 @default.
- W4313642997 hasConcept C159985019 @default.
- W4313642997 hasConcept C171250308 @default.
- W4313642997 hasConcept C175854130 @default.
- W4313642997 hasConcept C185592680 @default.
- W4313642997 hasConcept C191897082 @default.
- W4313642997 hasConcept C192562407 @default.
- W4313642997 hasConcept C193867417 @default.
- W4313642997 hasConcept C49040817 @default.
- W4313642997 hasConcept C49326732 @default.
- W4313642997 hasConcept C61441594 @default.
- W4313642997 hasConcept C8010536 @default.
- W4313642997 hasConcept C97355855 @default.
- W4313642997 hasConceptScore W4313642997C105382558 @default.
- W4313642997 hasConceptScore W4313642997C121332964 @default.
- W4313642997 hasConceptScore W4313642997C137637335 @default.
- W4313642997 hasConceptScore W4313642997C159467904 @default.
- W4313642997 hasConceptScore W4313642997C159985019 @default.
- W4313642997 hasConceptScore W4313642997C171250308 @default.
- W4313642997 hasConceptScore W4313642997C175854130 @default.
- W4313642997 hasConceptScore W4313642997C185592680 @default.
- W4313642997 hasConceptScore W4313642997C191897082 @default.
- W4313642997 hasConceptScore W4313642997C192562407 @default.
- W4313642997 hasConceptScore W4313642997C193867417 @default.
- W4313642997 hasConceptScore W4313642997C49040817 @default.
- W4313642997 hasConceptScore W4313642997C49326732 @default.
- W4313642997 hasConceptScore W4313642997C61441594 @default.
- W4313642997 hasConceptScore W4313642997C8010536 @default.
- W4313642997 hasConceptScore W4313642997C97355855 @default.
- W4313642997 hasLocation W43136429971 @default.