Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313643053> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313643053 endingPage "126628" @default.
- W4313643053 startingPage "126628" @default.
- W4313643053 abstract "The ability to predict wind is crucial for both energy production and weather forecasting. Mechanistic models that form the basis of traditional forecasting perform poorly near the ground. Here we take an alternative data-driven approach based on supervised learning. We analyze massive datasets of wind measured from anemometers located at 10 m height in 32 locations in central and north-west Italy. We train supervised learning algorithms using the past history of wind to predict its value at future horizons. Using data from single locations and horizons, we compare systematically several algorithms where we vary the input/output variables, the memory and the linear vs non-linear model. We then compare performance of the best algorithms across all locations and forecasting horizons. We find that the optimal design as well as its performance change with the location. We demonstrate that the presence of a diurnal cycle provides a rationale to understand this variation. We conclude with a systematic comparison with state of the art algorithms. When focusing on publicly available datasets, our algorithm improves performance of 0.3 m/s on average. In the aggregate, these comparisons show that, when the model is accurately designed, shallow algorithms are competitive with deep architectures." @default.
- W4313643053 created "2023-01-07" @default.
- W4313643053 creator A5023791400 @default.
- W4313643053 creator A5030349975 @default.
- W4313643053 creator A5036155531 @default.
- W4313643053 creator A5036620304 @default.
- W4313643053 creator A5054055290 @default.
- W4313643053 creator A5061220999 @default.
- W4313643053 creator A5079450620 @default.
- W4313643053 date "2023-04-01" @default.
- W4313643053 modified "2023-09-29" @default.
- W4313643053 title "Physics informed machine learning for wind speed prediction" @default.
- W4313643053 cites W2009030445 @default.
- W4313643053 cites W2045797250 @default.
- W4313643053 cites W2077179900 @default.
- W4313643053 cites W2113522414 @default.
- W4313643053 cites W2121541969 @default.
- W4313643053 cites W2302101267 @default.
- W4313643053 cites W2513964223 @default.
- W4313643053 cites W2784381726 @default.
- W4313643053 cites W2790114420 @default.
- W4313643053 cites W2790935051 @default.
- W4313643053 cites W2801465633 @default.
- W4313643053 cites W2905528277 @default.
- W4313643053 cites W2913280151 @default.
- W4313643053 cites W2921731747 @default.
- W4313643053 cites W2947456282 @default.
- W4313643053 cites W2980678129 @default.
- W4313643053 cites W2999618686 @default.
- W4313643053 cites W3039344276 @default.
- W4313643053 cites W3094626844 @default.
- W4313643053 cites W3157175643 @default.
- W4313643053 cites W3158269118 @default.
- W4313643053 cites W3170045063 @default.
- W4313643053 cites W3210373870 @default.
- W4313643053 cites W3217410715 @default.
- W4313643053 cites W3217435372 @default.
- W4313643053 doi "https://doi.org/10.1016/j.energy.2023.126628" @default.
- W4313643053 hasPublicationYear "2023" @default.
- W4313643053 type Work @default.
- W4313643053 citedByCount "0" @default.
- W4313643053 crossrefType "journal-article" @default.
- W4313643053 hasAuthorship W4313643053A5023791400 @default.
- W4313643053 hasAuthorship W4313643053A5030349975 @default.
- W4313643053 hasAuthorship W4313643053A5036155531 @default.
- W4313643053 hasAuthorship W4313643053A5036620304 @default.
- W4313643053 hasAuthorship W4313643053A5054055290 @default.
- W4313643053 hasAuthorship W4313643053A5061220999 @default.
- W4313643053 hasAuthorship W4313643053A5079450620 @default.
- W4313643053 hasBestOaLocation W43136430531 @default.
- W4313643053 hasConcept C11413529 @default.
- W4313643053 hasConcept C119857082 @default.
- W4313643053 hasConcept C124101348 @default.
- W4313643053 hasConcept C127882809 @default.
- W4313643053 hasConcept C153294291 @default.
- W4313643053 hasConcept C154945302 @default.
- W4313643053 hasConcept C161067210 @default.
- W4313643053 hasConcept C205649164 @default.
- W4313643053 hasConcept C41008148 @default.
- W4313643053 hasConceptScore W4313643053C11413529 @default.
- W4313643053 hasConceptScore W4313643053C119857082 @default.
- W4313643053 hasConceptScore W4313643053C124101348 @default.
- W4313643053 hasConceptScore W4313643053C127882809 @default.
- W4313643053 hasConceptScore W4313643053C153294291 @default.
- W4313643053 hasConceptScore W4313643053C154945302 @default.
- W4313643053 hasConceptScore W4313643053C161067210 @default.
- W4313643053 hasConceptScore W4313643053C205649164 @default.
- W4313643053 hasConceptScore W4313643053C41008148 @default.
- W4313643053 hasFunder F4320306076 @default.
- W4313643053 hasFunder F4320320300 @default.
- W4313643053 hasFunder F4320332161 @default.
- W4313643053 hasFunder F4320338279 @default.
- W4313643053 hasFunder F4320338335 @default.
- W4313643053 hasLocation W43136430531 @default.
- W4313643053 hasOpenAccess W4313643053 @default.
- W4313643053 hasPrimaryLocation W43136430531 @default.
- W4313643053 hasRelatedWork W1495316733 @default.
- W4313643053 hasRelatedWork W1504641696 @default.
- W4313643053 hasRelatedWork W2012006477 @default.
- W4313643053 hasRelatedWork W2353315420 @default.
- W4313643053 hasRelatedWork W2780185359 @default.
- W4313643053 hasRelatedWork W2961085424 @default.
- W4313643053 hasRelatedWork W4225307033 @default.
- W4313643053 hasRelatedWork W4283321268 @default.
- W4313643053 hasRelatedWork W4377970086 @default.
- W4313643053 hasRelatedWork W642631389 @default.
- W4313643053 hasVolume "268" @default.
- W4313643053 isParatext "false" @default.
- W4313643053 isRetracted "false" @default.
- W4313643053 workType "article" @default.