Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313643148> ?p ?o ?g. }
- W4313643148 endingPage "267" @default.
- W4313643148 startingPage "255" @default.
- W4313643148 abstract "This study provides an applicable methodological approach applying artificial intelligence (AI)-based supervised machine learning (ML) algorithms in risk assessment of post-pandemic household cryptocurrency investments and identifies the best performed ML algorithm and the most important risk assessment determinants. The empirical findings from analyzing 13 determinants from 1,000 dataset collected from major cryptocurrency communities online suggest that the logistic regression (LR) algorithm outperforms the remaining six ML algorithms by using performance metrics, lift chart, and ROC chart. Moreover, to make the ML algorithm results explainable and tackle the “black box” issue, the top five most important determinants are discovered, which are the interaction between investment amount and investment duration, investment amount, perception of traditional investments, cryptocurrency literacy, and perception of cryptocurrency volatility. The present study contributes to the literature on risk assessment, especially on the household cryptocurrency investments in the post-pandemic era and the body of knowledge on explainable supervised ML algorithms." @default.
- W4313643148 created "2023-01-07" @default.
- W4313643148 creator A5058018639 @default.
- W4313643148 date "2023-01-07" @default.
- W4313643148 modified "2023-10-17" @default.
- W4313643148 title "Investigating risk assessment in post-pandemic household cryptocurrency investments: an explainable machine learning approach" @default.
- W4313643148 cites W1964451859 @default.
- W4313643148 cites W1996814744 @default.
- W4313643148 cites W2026217192 @default.
- W4313643148 cites W2027717478 @default.
- W4313643148 cites W2039734130 @default.
- W4313643148 cites W2083146342 @default.
- W4313643148 cites W2087904691 @default.
- W4313643148 cites W2102843519 @default.
- W4313643148 cites W2147168592 @default.
- W4313643148 cites W2151554678 @default.
- W4313643148 cites W2155806188 @default.
- W4313643148 cites W2159100463 @default.
- W4313643148 cites W2162903010 @default.
- W4313643148 cites W2172898789 @default.
- W4313643148 cites W2550774724 @default.
- W4313643148 cites W2616442926 @default.
- W4313643148 cites W2767875844 @default.
- W4313643148 cites W2783367140 @default.
- W4313643148 cites W2793906868 @default.
- W4313643148 cites W2892261717 @default.
- W4313643148 cites W2941866048 @default.
- W4313643148 cites W2973382223 @default.
- W4313643148 cites W2982469182 @default.
- W4313643148 cites W3000562917 @default.
- W4313643148 cites W3000739907 @default.
- W4313643148 cites W3008066307 @default.
- W4313643148 cites W3009099305 @default.
- W4313643148 cites W3011176756 @default.
- W4313643148 cites W3020982786 @default.
- W4313643148 cites W3026661449 @default.
- W4313643148 cites W3033445019 @default.
- W4313643148 cites W3034813019 @default.
- W4313643148 cites W3041152699 @default.
- W4313643148 cites W3044802860 @default.
- W4313643148 cites W3044964670 @default.
- W4313643148 cites W3047912222 @default.
- W4313643148 cites W3081572486 @default.
- W4313643148 cites W3087194935 @default.
- W4313643148 cites W3120338070 @default.
- W4313643148 cites W3121517904 @default.
- W4313643148 cites W3121815230 @default.
- W4313643148 cites W3122030459 @default.
- W4313643148 cites W3123161579 @default.
- W4313643148 cites W3125157582 @default.
- W4313643148 cites W3125987272 @default.
- W4313643148 cites W3154711534 @default.
- W4313643148 cites W3166672495 @default.
- W4313643148 cites W3170039229 @default.
- W4313643148 cites W3181767027 @default.
- W4313643148 cites W3183817428 @default.
- W4313643148 cites W3190367758 @default.
- W4313643148 cites W3209808675 @default.
- W4313643148 cites W4224440128 @default.
- W4313643148 cites W4225307038 @default.
- W4313643148 cites W4225755349 @default.
- W4313643148 cites W4229006568 @default.
- W4313643148 cites W4281667897 @default.
- W4313643148 cites W4281734075 @default.
- W4313643148 cites W4281756923 @default.
- W4313643148 cites W4296526627 @default.
- W4313643148 cites W4312935345 @default.
- W4313643148 doi "https://doi.org/10.1057/s41260-022-00302-z" @default.
- W4313643148 hasPublicationYear "2023" @default.
- W4313643148 type Work @default.
- W4313643148 citedByCount "1" @default.
- W4313643148 countsByYear W43136431482023 @default.
- W4313643148 crossrefType "journal-article" @default.
- W4313643148 hasAuthorship W4313643148A5058018639 @default.
- W4313643148 hasBestOaLocation W43136431481 @default.
- W4313643148 hasConcept C119857082 @default.
- W4313643148 hasConcept C149782125 @default.
- W4313643148 hasConcept C151956035 @default.
- W4313643148 hasConcept C154945302 @default.
- W4313643148 hasConcept C162324750 @default.
- W4313643148 hasConcept C180706569 @default.
- W4313643148 hasConcept C38652104 @default.
- W4313643148 hasConcept C41008148 @default.
- W4313643148 hasConceptScore W4313643148C119857082 @default.
- W4313643148 hasConceptScore W4313643148C149782125 @default.
- W4313643148 hasConceptScore W4313643148C151956035 @default.
- W4313643148 hasConceptScore W4313643148C154945302 @default.
- W4313643148 hasConceptScore W4313643148C162324750 @default.
- W4313643148 hasConceptScore W4313643148C180706569 @default.
- W4313643148 hasConceptScore W4313643148C38652104 @default.
- W4313643148 hasConceptScore W4313643148C41008148 @default.
- W4313643148 hasFunder F4320322323 @default.
- W4313643148 hasIssue "4" @default.
- W4313643148 hasLocation W43136431481 @default.
- W4313643148 hasOpenAccess W4313643148 @default.
- W4313643148 hasPrimaryLocation W43136431481 @default.
- W4313643148 hasRelatedWork W2899084033 @default.
- W4313643148 hasRelatedWork W2961085424 @default.