Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313644648> ?p ?o ?g. }
- W4313644648 endingPage "187" @default.
- W4313644648 startingPage "175" @default.
- W4313644648 abstract "Abstract The nonlinear relationship between the input process parameters and in-flight particle characteristics of the atmospheric plasma spray (APS) is of paramount importance for coating properties design and quality. It is also known that the ageing of torch electrodes affects this relationship. In recent years, machine learning algorithms have proven to be able to take into account such complex nonlinear interactions. This work illustrates the application of ensemble methods to predict the in-flight particle temperature and velocity during an APS process considering torch electrodes ageing. Experiments were performed to record simultaneously the input process parameters, the in-flight powder particle characteristics and the electrodes usage time. Random Forest (RF) and Gradient Boosting (GB) were used to rank and select the features for the APS process data recorded as the electrodes aged and the corresponding predictive models were compared. The time series aspect of the multivariate APS in-flight particle characteristics data is explored. Two strategies of time series embedding are considered. The first one simply embeds the attributes and the targets from the previous $$n$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>n</mml:mi> </mml:math> time segments considered without any modification; whereas the second strategy first performs differencing to make the time series stationary before embedding. For the present application, RF is found to be more suitable than GB since RF can predict both the in-flight particle velocity and temperature simultaneously, properly considering the interactions between the two targets. On the other hand, GB can only predict these two targets one at a time. The superior performance of both embedded predictive models and the feature rankings of them suggest that it is better to consider the APS data as time series for the in-flight particle characteristic prediction. In particular, it is demonstrated that it is advantageous to first make the time series stationary using the traditional differencing technique, even when modeling using RF." @default.
- W4313644648 created "2023-01-07" @default.
- W4313644648 creator A5005106275 @default.
- W4313644648 creator A5014598785 @default.
- W4313644648 creator A5028721556 @default.
- W4313644648 creator A5038472978 @default.
- W4313644648 date "2023-01-06" @default.
- W4313644648 modified "2023-09-24" @default.
- W4313644648 title "Ensemble Methods for APS In-Flight Particle Temperature and Velocity Prediction Considering Torch Electrodes Ageing" @default.
- W4313644648 cites W1678356000 @default.
- W4313644648 cites W1969588982 @default.
- W4313644648 cites W1970528206 @default.
- W4313644648 cites W1985685919 @default.
- W4313644648 cites W1994313800 @default.
- W4313644648 cites W2013299082 @default.
- W4313644648 cites W2035931938 @default.
- W4313644648 cites W2043048710 @default.
- W4313644648 cites W2070493638 @default.
- W4313644648 cites W2076673432 @default.
- W4313644648 cites W2076966613 @default.
- W4313644648 cites W2084714454 @default.
- W4313644648 cites W2085101513 @default.
- W4313644648 cites W2100483895 @default.
- W4313644648 cites W2108861581 @default.
- W4313644648 cites W2117953457 @default.
- W4313644648 cites W2129018774 @default.
- W4313644648 cites W2129270932 @default.
- W4313644648 cites W2142277401 @default.
- W4313644648 cites W2174096604 @default.
- W4313644648 cites W2492996509 @default.
- W4313644648 cites W2612027128 @default.
- W4313644648 cites W2787894218 @default.
- W4313644648 cites W2910520658 @default.
- W4313644648 cites W2911964244 @default.
- W4313644648 cites W2971797472 @default.
- W4313644648 cites W3006730271 @default.
- W4313644648 cites W3022201666 @default.
- W4313644648 cites W3082584658 @default.
- W4313644648 cites W3165272014 @default.
- W4313644648 cites W429766147 @default.
- W4313644648 cites W826742193 @default.
- W4313644648 doi "https://doi.org/10.1007/s11666-022-01472-3" @default.
- W4313644648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37521320" @default.
- W4313644648 hasPublicationYear "2023" @default.
- W4313644648 type Work @default.
- W4313644648 citedByCount "0" @default.
- W4313644648 crossrefType "journal-article" @default.
- W4313644648 hasAuthorship W4313644648A5005106275 @default.
- W4313644648 hasAuthorship W4313644648A5014598785 @default.
- W4313644648 hasAuthorship W4313644648A5028721556 @default.
- W4313644648 hasAuthorship W4313644648A5038472978 @default.
- W4313644648 hasBestOaLocation W43136446481 @default.
- W4313644648 hasConcept C111368507 @default.
- W4313644648 hasConcept C111919701 @default.
- W4313644648 hasConcept C11413529 @default.
- W4313644648 hasConcept C120665830 @default.
- W4313644648 hasConcept C121332964 @default.
- W4313644648 hasConcept C127313418 @default.
- W4313644648 hasConcept C143724316 @default.
- W4313644648 hasConcept C151730666 @default.
- W4313644648 hasConcept C154945302 @default.
- W4313644648 hasConcept C158622935 @default.
- W4313644648 hasConcept C159985019 @default.
- W4313644648 hasConcept C169258074 @default.
- W4313644648 hasConcept C17525397 @default.
- W4313644648 hasConcept C192562407 @default.
- W4313644648 hasConcept C19474535 @default.
- W4313644648 hasConcept C2778517922 @default.
- W4313644648 hasConcept C41008148 @default.
- W4313644648 hasConcept C41608201 @default.
- W4313644648 hasConcept C57879066 @default.
- W4313644648 hasConcept C62520636 @default.
- W4313644648 hasConcept C86803240 @default.
- W4313644648 hasConcept C946207 @default.
- W4313644648 hasConcept C98045186 @default.
- W4313644648 hasConcept C98960154 @default.
- W4313644648 hasConceptScore W4313644648C111368507 @default.
- W4313644648 hasConceptScore W4313644648C111919701 @default.
- W4313644648 hasConceptScore W4313644648C11413529 @default.
- W4313644648 hasConceptScore W4313644648C120665830 @default.
- W4313644648 hasConceptScore W4313644648C121332964 @default.
- W4313644648 hasConceptScore W4313644648C127313418 @default.
- W4313644648 hasConceptScore W4313644648C143724316 @default.
- W4313644648 hasConceptScore W4313644648C151730666 @default.
- W4313644648 hasConceptScore W4313644648C154945302 @default.
- W4313644648 hasConceptScore W4313644648C158622935 @default.
- W4313644648 hasConceptScore W4313644648C159985019 @default.
- W4313644648 hasConceptScore W4313644648C169258074 @default.
- W4313644648 hasConceptScore W4313644648C17525397 @default.
- W4313644648 hasConceptScore W4313644648C192562407 @default.
- W4313644648 hasConceptScore W4313644648C19474535 @default.
- W4313644648 hasConceptScore W4313644648C2778517922 @default.
- W4313644648 hasConceptScore W4313644648C41008148 @default.
- W4313644648 hasConceptScore W4313644648C41608201 @default.
- W4313644648 hasConceptScore W4313644648C57879066 @default.
- W4313644648 hasConceptScore W4313644648C62520636 @default.
- W4313644648 hasConceptScore W4313644648C86803240 @default.
- W4313644648 hasConceptScore W4313644648C946207 @default.