Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313644877> ?p ?o ?g. }
- W4313644877 endingPage "119488" @default.
- W4313644877 startingPage "119488" @default.
- W4313644877 abstract "The electroencephalographic (EEG) signals provide highly informative data on brain activities and functions. Therefore, it is possible to extract a great variety of features from these data. The heterogeneity and high dimensionality of the EEG signals may represent an obstacle for data interpretation. The introduction of a priori knowledge has been widely employed to mitigate high dimensionality problems, even though it could lose some information and patterns present in the data. Moreover, data heterogeneity remains an open issue that often makes generalization difficult. In this study, we propose the adoption of a Genetic Algorithm (GA) for feature selection, where we introduced a series of modifications on the stopping criteria and fitness functions only and that can be used with a supervised or unsupervised approach. Our proposal considers three different fitness functions without relying on expert knowledge. Starting from two publicly available datasets on cognitive workload and motor movement/imagery, the EEG signals are processed, normalized and their features computed in the time, frequency and time–frequency domains. The feature vector selection is performed by applying our GA proposal and compared with two benchmarking techniques, i.e., using the entire feature set and reducing it through principal component analysis. Our proposal experiments achieve better results in respect to the benchmark in terms of overall performance and feature reduction. Moreover, the application of our novel fitness function outperforms the benchmark when the two considered datasets are merged together, showing the effectiveness of our proposal on heterogeneous data. The selected features are compliant with the neuroscientific literature regarding the considered experimental conditions. Future works will focus on providing a better scoring for the unsupervised technique, the hybrid use of the two approaches and the optimization of the GA parameters." @default.
- W4313644877 created "2023-01-07" @default.
- W4313644877 creator A5038865376 @default.
- W4313644877 creator A5088609790 @default.
- W4313644877 date "2023-05-01" @default.
- W4313644877 modified "2023-10-04" @default.
- W4313644877 title "Genetic algorithm for feature selection of EEG heterogeneous data" @default.
- W4313644877 cites W1541288193 @default.
- W4313644877 cites W1547702425 @default.
- W4313644877 cites W1877153489 @default.
- W4313644877 cites W1953554983 @default.
- W4313644877 cites W1963735786 @default.
- W4313644877 cites W1964176984 @default.
- W4313644877 cites W1968535060 @default.
- W4313644877 cites W1971281397 @default.
- W4313644877 cites W1974996943 @default.
- W4313644877 cites W1987971958 @default.
- W4313644877 cites W1988150589 @default.
- W4313644877 cites W2006082701 @default.
- W4313644877 cites W2015356304 @default.
- W4313644877 cites W2027992048 @default.
- W4313644877 cites W2036007897 @default.
- W4313644877 cites W2058132619 @default.
- W4313644877 cites W2068145752 @default.
- W4313644877 cites W2081420711 @default.
- W4313644877 cites W2084413241 @default.
- W4313644877 cites W2086983697 @default.
- W4313644877 cites W2090530235 @default.
- W4313644877 cites W2101913765 @default.
- W4313644877 cites W2106822551 @default.
- W4313644877 cites W2128728535 @default.
- W4313644877 cites W2128909182 @default.
- W4313644877 cites W2134050473 @default.
- W4313644877 cites W2151669316 @default.
- W4313644877 cites W2162800060 @default.
- W4313644877 cites W2316557706 @default.
- W4313644877 cites W2343420905 @default.
- W4313644877 cites W2513975684 @default.
- W4313644877 cites W2736583283 @default.
- W4313644877 cites W2762323924 @default.
- W4313644877 cites W2769023607 @default.
- W4313644877 cites W2791936143 @default.
- W4313644877 cites W2794345050 @default.
- W4313644877 cites W2794908419 @default.
- W4313644877 cites W2800938746 @default.
- W4313644877 cites W2827746458 @default.
- W4313644877 cites W2883269930 @default.
- W4313644877 cites W2888355470 @default.
- W4313644877 cites W2897120700 @default.
- W4313644877 cites W2899800683 @default.
- W4313644877 cites W2910134385 @default.
- W4313644877 cites W2915893085 @default.
- W4313644877 cites W2919403121 @default.
- W4313644877 cites W2923605749 @default.
- W4313644877 cites W2940740645 @default.
- W4313644877 cites W2941401350 @default.
- W4313644877 cites W2951248525 @default.
- W4313644877 cites W2962890799 @default.
- W4313644877 cites W2963355311 @default.
- W4313644877 cites W2963662761 @default.
- W4313644877 cites W2963805697 @default.
- W4313644877 cites W2975985722 @default.
- W4313644877 cites W2994921215 @default.
- W4313644877 cites W3000981632 @default.
- W4313644877 cites W3003908700 @default.
- W4313644877 cites W3004161400 @default.
- W4313644877 cites W3023481128 @default.
- W4313644877 cites W3083869634 @default.
- W4313644877 cites W3084234282 @default.
- W4313644877 cites W3092774335 @default.
- W4313644877 cites W3159079182 @default.
- W4313644877 cites W3180132925 @default.
- W4313644877 cites W4212842186 @default.
- W4313644877 cites W4214646555 @default.
- W4313644877 cites W4239510810 @default.
- W4313644877 cites W4293237953 @default.
- W4313644877 cites W883434633 @default.
- W4313644877 doi "https://doi.org/10.1016/j.eswa.2022.119488" @default.
- W4313644877 hasPublicationYear "2023" @default.
- W4313644877 type Work @default.
- W4313644877 citedByCount "4" @default.
- W4313644877 countsByYear W43136448772023 @default.
- W4313644877 crossrefType "journal-article" @default.
- W4313644877 hasAuthorship W4313644877A5038865376 @default.
- W4313644877 hasAuthorship W4313644877A5088609790 @default.
- W4313644877 hasBestOaLocation W43136448772 @default.
- W4313644877 hasConcept C111030470 @default.
- W4313644877 hasConcept C119857082 @default.
- W4313644877 hasConcept C124101348 @default.
- W4313644877 hasConcept C13280743 @default.
- W4313644877 hasConcept C138885662 @default.
- W4313644877 hasConcept C144133560 @default.
- W4313644877 hasConcept C148483581 @default.
- W4313644877 hasConcept C153180895 @default.
- W4313644877 hasConcept C154945302 @default.
- W4313644877 hasConcept C162853370 @default.
- W4313644877 hasConcept C176066374 @default.
- W4313644877 hasConcept C185798385 @default.