Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313646257> ?p ?o ?g. }
- W4313646257 endingPage "782" @default.
- W4313646257 startingPage "782" @default.
- W4313646257 abstract "ML-based applications already play an important role in factories in areas such as visual quality inspection, process optimization, and maintenance prediction and will become even more important in the future. For ML to be used in an industrial setting in a safe and effective way, the different steps needed to use ML must be put together in an ML pipeline. The development of ML pipelines is usually conducted by several and changing external stakeholders because they are very complex constructs, and confidence in their work is not always clear. Thus, end-to-end trust in the ML pipeline is not granted automatically. This is because the components and processes in ML pipelines are not transparent. This can also cause problems with certification in areas where safety is very important, such as the medical field, where procedures and their results must be recorded in detail. In addition, there are security challenges, such as attacks on the model and the ML pipeline, that are difficult to detect. This paper provides an overview of ML security challenges that can arise in production environments and presents a framework on how to address data security and transparency in ML pipelines. The framework is presented using visual quality inspection as an example. The presented framework provides: (a) a tamper-proof data history, which achieves accountability and supports quality audits; (b) an increase in trust by protocol for the used ML pipeline, by rating the experts and entities involved in the ML pipeline and certifying legitimacy for participation; and (c) certification of the pipeline infrastructure, the ML model, data collection, and labelling. After describing the details of the new approach, the mitigation of the previously described security attacks will be demonstrated, and a conclusion will be drawn." @default.
- W4313646257 created "2023-01-07" @default.
- W4313646257 creator A5009120290 @default.
- W4313646257 creator A5066802834 @default.
- W4313646257 creator A5088114580 @default.
- W4313646257 date "2023-01-05" @default.
- W4313646257 modified "2023-10-01" @default.
- W4313646257 title "Blockchain Secured Dynamic Machine Learning Pipeline for Manufacturing" @default.
- W4313646257 cites W1973653918 @default.
- W4313646257 cites W2005501262 @default.
- W4313646257 cites W2299177375 @default.
- W4313646257 cites W2535690855 @default.
- W4313646257 cites W2543927648 @default.
- W4313646257 cites W2591882872 @default.
- W4313646257 cites W2773498067 @default.
- W4313646257 cites W2795435272 @default.
- W4313646257 cites W2799040448 @default.
- W4313646257 cites W2801491268 @default.
- W4313646257 cites W2912439370 @default.
- W4313646257 cites W2922234936 @default.
- W4313646257 cites W2930926105 @default.
- W4313646257 cites W2949361785 @default.
- W4313646257 cites W2952260178 @default.
- W4313646257 cites W2963303354 @default.
- W4313646257 cites W2963456518 @default.
- W4313646257 cites W2972882814 @default.
- W4313646257 cites W2981446616 @default.
- W4313646257 cites W2998539612 @default.
- W4313646257 cites W3012130770 @default.
- W4313646257 cites W3087391814 @default.
- W4313646257 cites W3087934602 @default.
- W4313646257 cites W3088597519 @default.
- W4313646257 cites W3091348074 @default.
- W4313646257 cites W3093837210 @default.
- W4313646257 cites W3101883599 @default.
- W4313646257 cites W3127461705 @default.
- W4313646257 cites W3159119821 @default.
- W4313646257 cites W3175192640 @default.
- W4313646257 cites W3195579788 @default.
- W4313646257 cites W3198738210 @default.
- W4313646257 cites W3211044875 @default.
- W4313646257 cites W4210354100 @default.
- W4313646257 cites W4213418104 @default.
- W4313646257 cites W4255535209 @default.
- W4313646257 cites W4290991195 @default.
- W4313646257 doi "https://doi.org/10.3390/app13020782" @default.
- W4313646257 hasPublicationYear "2023" @default.
- W4313646257 type Work @default.
- W4313646257 citedByCount "3" @default.
- W4313646257 countsByYear W43136462572023 @default.
- W4313646257 crossrefType "journal-article" @default.
- W4313646257 hasAuthorship W4313646257A5009120290 @default.
- W4313646257 hasAuthorship W4313646257A5066802834 @default.
- W4313646257 hasAuthorship W4313646257A5088114580 @default.
- W4313646257 hasBestOaLocation W43136462571 @default.
- W4313646257 hasConcept C111472728 @default.
- W4313646257 hasConcept C112930515 @default.
- W4313646257 hasConcept C121955636 @default.
- W4313646257 hasConcept C127413603 @default.
- W4313646257 hasConcept C138885662 @default.
- W4313646257 hasConcept C142724271 @default.
- W4313646257 hasConcept C144133560 @default.
- W4313646257 hasConcept C175309249 @default.
- W4313646257 hasConcept C17744445 @default.
- W4313646257 hasConcept C199360897 @default.
- W4313646257 hasConcept C199521495 @default.
- W4313646257 hasConcept C199539241 @default.
- W4313646257 hasConcept C204787440 @default.
- W4313646257 hasConcept C2779530757 @default.
- W4313646257 hasConcept C2780233690 @default.
- W4313646257 hasConcept C2780385302 @default.
- W4313646257 hasConcept C38652104 @default.
- W4313646257 hasConcept C41008148 @default.
- W4313646257 hasConcept C43521106 @default.
- W4313646257 hasConcept C46304622 @default.
- W4313646257 hasConcept C71924100 @default.
- W4313646257 hasConcept C87717796 @default.
- W4313646257 hasConceptScore W4313646257C111472728 @default.
- W4313646257 hasConceptScore W4313646257C112930515 @default.
- W4313646257 hasConceptScore W4313646257C121955636 @default.
- W4313646257 hasConceptScore W4313646257C127413603 @default.
- W4313646257 hasConceptScore W4313646257C138885662 @default.
- W4313646257 hasConceptScore W4313646257C142724271 @default.
- W4313646257 hasConceptScore W4313646257C144133560 @default.
- W4313646257 hasConceptScore W4313646257C175309249 @default.
- W4313646257 hasConceptScore W4313646257C17744445 @default.
- W4313646257 hasConceptScore W4313646257C199360897 @default.
- W4313646257 hasConceptScore W4313646257C199521495 @default.
- W4313646257 hasConceptScore W4313646257C199539241 @default.
- W4313646257 hasConceptScore W4313646257C204787440 @default.
- W4313646257 hasConceptScore W4313646257C2779530757 @default.
- W4313646257 hasConceptScore W4313646257C2780233690 @default.
- W4313646257 hasConceptScore W4313646257C2780385302 @default.
- W4313646257 hasConceptScore W4313646257C38652104 @default.
- W4313646257 hasConceptScore W4313646257C41008148 @default.
- W4313646257 hasConceptScore W4313646257C43521106 @default.
- W4313646257 hasConceptScore W4313646257C46304622 @default.
- W4313646257 hasConceptScore W4313646257C71924100 @default.