Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313646509> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313646509 endingPage "2236" @default.
- W4313646509 startingPage "2223" @default.
- W4313646509 abstract "Abstract The popularity of analytical research specializing in forecasting of March Madness saw an increase in the past decades. While the influence of nongame statistics on the game outcome has become a great interest in sports analytics, little research has focused on situational factors in predicting sports tournament outcomes. Therefore, this study is to examine the use of different machine learning algorithms, including artificial neural network (ANN), k‐nearest neighbors (kNN), support vector machine (SVM), logistic regression, and random forest (RF), to forecast the winning in a matchup between any two given teams during the March Madness tournaments. Our data include 1370 observations with 685 tournament games from 2006 to 2007 to 2016 to 2017 seasons. The results show that neural networks outperformed all other classifiers (67% of accuracy), followed by SVM (65%), kNN (63%), logistic regression (63%), and RF (61%)." @default.
- W4313646509 created "2023-01-07" @default.
- W4313646509 creator A5029029378 @default.
- W4313646509 creator A5043183064 @default.
- W4313646509 creator A5075974368 @default.
- W4313646509 date "2023-01-06" @default.
- W4313646509 modified "2023-10-12" @default.
- W4313646509 title "March Madness prediction: Different machine learning approaches with non‐box score statistics" @default.
- W4313646509 cites W1509377445 @default.
- W4313646509 cites W1590655628 @default.
- W4313646509 cites W1797580880 @default.
- W4313646509 cites W1901616594 @default.
- W4313646509 cites W1976526581 @default.
- W4313646509 cites W2058731786 @default.
- W4313646509 cites W2071602610 @default.
- W4313646509 cites W2073089243 @default.
- W4313646509 cites W2074152770 @default.
- W4313646509 cites W2080176796 @default.
- W4313646509 cites W2101927907 @default.
- W4313646509 cites W2117270551 @default.
- W4313646509 cites W2155632266 @default.
- W4313646509 cites W2333153834 @default.
- W4313646509 cites W2338178179 @default.
- W4313646509 cites W2408652993 @default.
- W4313646509 cites W2495354183 @default.
- W4313646509 cites W2512625237 @default.
- W4313646509 cites W2754846726 @default.
- W4313646509 cites W2804715222 @default.
- W4313646509 cites W2898522611 @default.
- W4313646509 cites W2907713084 @default.
- W4313646509 cites W2908448204 @default.
- W4313646509 cites W2968058863 @default.
- W4313646509 cites W2972919592 @default.
- W4313646509 cites W2973197556 @default.
- W4313646509 cites W3009294386 @default.
- W4313646509 cites W3009487115 @default.
- W4313646509 cites W3037269701 @default.
- W4313646509 cites W3118489015 @default.
- W4313646509 cites W3128655830 @default.
- W4313646509 cites W4210443904 @default.
- W4313646509 cites W4223982956 @default.
- W4313646509 cites W4233918537 @default.
- W4313646509 cites W82723948 @default.
- W4313646509 doi "https://doi.org/10.1002/mde.3814" @default.
- W4313646509 hasPublicationYear "2023" @default.
- W4313646509 type Work @default.
- W4313646509 citedByCount "0" @default.
- W4313646509 crossrefType "journal-article" @default.
- W4313646509 hasAuthorship W4313646509A5029029378 @default.
- W4313646509 hasAuthorship W4313646509A5043183064 @default.
- W4313646509 hasAuthorship W4313646509A5075974368 @default.
- W4313646509 hasConcept C105795698 @default.
- W4313646509 hasConcept C114614502 @default.
- W4313646509 hasConcept C119857082 @default.
- W4313646509 hasConcept C12267149 @default.
- W4313646509 hasConcept C136975688 @default.
- W4313646509 hasConcept C151956035 @default.
- W4313646509 hasConcept C154945302 @default.
- W4313646509 hasConcept C15744967 @default.
- W4313646509 hasConcept C169258074 @default.
- W4313646509 hasConcept C2780586970 @default.
- W4313646509 hasConcept C33923547 @default.
- W4313646509 hasConcept C41008148 @default.
- W4313646509 hasConcept C50644808 @default.
- W4313646509 hasConcept C77805123 @default.
- W4313646509 hasConceptScore W4313646509C105795698 @default.
- W4313646509 hasConceptScore W4313646509C114614502 @default.
- W4313646509 hasConceptScore W4313646509C119857082 @default.
- W4313646509 hasConceptScore W4313646509C12267149 @default.
- W4313646509 hasConceptScore W4313646509C136975688 @default.
- W4313646509 hasConceptScore W4313646509C151956035 @default.
- W4313646509 hasConceptScore W4313646509C154945302 @default.
- W4313646509 hasConceptScore W4313646509C15744967 @default.
- W4313646509 hasConceptScore W4313646509C169258074 @default.
- W4313646509 hasConceptScore W4313646509C2780586970 @default.
- W4313646509 hasConceptScore W4313646509C33923547 @default.
- W4313646509 hasConceptScore W4313646509C41008148 @default.
- W4313646509 hasConceptScore W4313646509C50644808 @default.
- W4313646509 hasConceptScore W4313646509C77805123 @default.
- W4313646509 hasIssue "4" @default.
- W4313646509 hasLocation W43136465091 @default.
- W4313646509 hasOpenAccess W4313646509 @default.
- W4313646509 hasPrimaryLocation W43136465091 @default.
- W4313646509 hasRelatedWork W2004826645 @default.
- W4313646509 hasRelatedWork W2955796858 @default.
- W4313646509 hasRelatedWork W3135818052 @default.
- W4313646509 hasRelatedWork W4200112873 @default.
- W4313646509 hasRelatedWork W4224941037 @default.
- W4313646509 hasRelatedWork W4308573183 @default.
- W4313646509 hasRelatedWork W4366967560 @default.
- W4313646509 hasRelatedWork W4367335937 @default.
- W4313646509 hasRelatedWork W4367335965 @default.
- W4313646509 hasRelatedWork W4385574838 @default.
- W4313646509 hasVolume "44" @default.
- W4313646509 isParatext "false" @default.
- W4313646509 isRetracted "false" @default.
- W4313646509 workType "article" @default.