Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313646572> ?p ?o ?g. }
- W4313646572 endingPage "656" @default.
- W4313646572 startingPage "656" @default.
- W4313646572 abstract "Many individuals worldwide pass away as a result of inadequate procedures for prompt illness identification and subsequent treatment. A valuable life can be saved or at least extended with the early identification of serious illnesses, such as various cancers and other life-threatening conditions. The development of the Internet of Medical Things (IoMT) has made it possible for healthcare technology to offer the general public efficient medical services and make a significant contribution to patients' recoveries. By using IoMT to diagnose and examine BreakHis v1 400× breast cancer histology (BCH) scans, disorders may be quickly identified and appropriate treatment can be given to a patient. Imaging equipment having the capability of auto-analyzing acquired pictures can be used to achieve this. However, the majority of deep learning (DL)-based image classification approaches are of a large number of parameters and unsuitable for application in IoMT-centered imaging sensors. The goal of this study is to create a lightweight deep transfer learning (DTL) model suited for BCH scan examination and has a good level of accuracy. In this study, a lightweight DTL-based model MobileNet-SVM, which is the hybridization of MobileNet and Support Vector Machine (SVM), for auto-classifying BreakHis v1 400× BCH images is presented. When tested against a real dataset of BreakHis v1 400× BCH images, the suggested technique achieved a training accuracy of 100% on the training dataset. It also obtained an accuracy of 91% and an F1-score of 91.35 on the test dataset. Considering how complicated BCH scans are, the findings are encouraging. The MobileNet-SVM model is ideal for IoMT imaging equipment in addition to having a high degree of precision. According to the simulation findings, the suggested model requires a small computation speed and time." @default.
- W4313646572 created "2023-01-07" @default.
- W4313646572 creator A5012131939 @default.
- W4313646572 creator A5015778689 @default.
- W4313646572 creator A5071054943 @default.
- W4313646572 creator A5086873572 @default.
- W4313646572 date "2023-01-06" @default.
- W4313646572 modified "2023-10-15" @default.
- W4313646572 title "MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors" @default.
- W4313646572 cites W1914971724 @default.
- W4313646572 cites W1968634208 @default.
- W4313646572 cites W2011430131 @default.
- W4313646572 cites W2063322980 @default.
- W4313646572 cites W2097117768 @default.
- W4313646572 cites W2107411682 @default.
- W4313646572 cites W2122197597 @default.
- W4313646572 cites W2124386111 @default.
- W4313646572 cites W2148309496 @default.
- W4313646572 cites W2151608510 @default.
- W4313646572 cites W2163352848 @default.
- W4313646572 cites W2194775991 @default.
- W4313646572 cites W2344480160 @default.
- W4313646572 cites W2370924594 @default.
- W4313646572 cites W2549267210 @default.
- W4313646572 cites W2554892747 @default.
- W4313646572 cites W2560322684 @default.
- W4313646572 cites W2587148149 @default.
- W4313646572 cites W2609584387 @default.
- W4313646572 cites W2618530766 @default.
- W4313646572 cites W2716665989 @default.
- W4313646572 cites W2727347885 @default.
- W4313646572 cites W2767410506 @default.
- W4313646572 cites W2772030296 @default.
- W4313646572 cites W2788072220 @default.
- W4313646572 cites W2801370692 @default.
- W4313646572 cites W2889646458 @default.
- W4313646572 cites W2894084084 @default.
- W4313646572 cites W2903119292 @default.
- W4313646572 cites W2914836117 @default.
- W4313646572 cites W2919115771 @default.
- W4313646572 cites W2955042357 @default.
- W4313646572 cites W2964030969 @default.
- W4313646572 cites W2983126243 @default.
- W4313646572 cites W2991564522 @default.
- W4313646572 cites W3000252705 @default.
- W4313646572 cites W3010871530 @default.
- W4313646572 cites W3011012878 @default.
- W4313646572 cites W3085214060 @default.
- W4313646572 cites W3087788233 @default.
- W4313646572 cites W3129848661 @default.
- W4313646572 cites W3158053885 @default.
- W4313646572 cites W3158340475 @default.
- W4313646572 cites W3163615921 @default.
- W4313646572 cites W3191703705 @default.
- W4313646572 cites W4206961833 @default.
- W4313646572 cites W4282982312 @default.
- W4313646572 cites W4283526075 @default.
- W4313646572 cites W4283786398 @default.
- W4313646572 cites W4296083357 @default.
- W4313646572 cites W4296432997 @default.
- W4313646572 cites W4306180875 @default.
- W4313646572 cites W4306784173 @default.
- W4313646572 doi "https://doi.org/10.3390/s23020656" @default.
- W4313646572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36679455" @default.
- W4313646572 hasPublicationYear "2023" @default.
- W4313646572 type Work @default.
- W4313646572 citedByCount "7" @default.
- W4313646572 countsByYear W43136465722023 @default.
- W4313646572 crossrefType "journal-article" @default.
- W4313646572 hasAuthorship W4313646572A5012131939 @default.
- W4313646572 hasAuthorship W4313646572A5015778689 @default.
- W4313646572 hasAuthorship W4313646572A5071054943 @default.
- W4313646572 hasAuthorship W4313646572A5086873572 @default.
- W4313646572 hasBestOaLocation W43136465721 @default.
- W4313646572 hasConcept C108583219 @default.
- W4313646572 hasConcept C110875604 @default.
- W4313646572 hasConcept C111919701 @default.
- W4313646572 hasConcept C11413529 @default.
- W4313646572 hasConcept C119857082 @default.
- W4313646572 hasConcept C12267149 @default.
- W4313646572 hasConcept C150899416 @default.
- W4313646572 hasConcept C153180895 @default.
- W4313646572 hasConcept C154945302 @default.
- W4313646572 hasConcept C41008148 @default.
- W4313646572 hasConcept C42276685 @default.
- W4313646572 hasConcept C57273362 @default.
- W4313646572 hasConceptScore W4313646572C108583219 @default.
- W4313646572 hasConceptScore W4313646572C110875604 @default.
- W4313646572 hasConceptScore W4313646572C111919701 @default.
- W4313646572 hasConceptScore W4313646572C11413529 @default.
- W4313646572 hasConceptScore W4313646572C119857082 @default.
- W4313646572 hasConceptScore W4313646572C12267149 @default.
- W4313646572 hasConceptScore W4313646572C150899416 @default.
- W4313646572 hasConceptScore W4313646572C153180895 @default.
- W4313646572 hasConceptScore W4313646572C154945302 @default.
- W4313646572 hasConceptScore W4313646572C41008148 @default.
- W4313646572 hasConceptScore W4313646572C42276685 @default.
- W4313646572 hasConceptScore W4313646572C57273362 @default.