Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313646596> ?p ?o ?g. }
- W4313646596 endingPage "655" @default.
- W4313646596 startingPage "655" @default.
- W4313646596 abstract "Fetal brain tissue segmentation is essential for quantifying the presence of congenital disorders in the developing fetus. Manual segmentation of fetal brain tissue is cumbersome and time-consuming, so using an automatic segmentation method can greatly simplify the process. In addition, the fetal brain undergoes a variety of changes throughout pregnancy, such as increased brain volume, neuronal migration, and synaptogenesis. In this case, the contrast between tissues, especially between gray matter and white matter, constantly changes throughout pregnancy, increasing the complexity and difficulty of our segmentation. To reduce the burden of manual refinement of segmentation, we proposed a new deep learning-based segmentation method. Our approach utilized a novel attentional structural block, the contextual transformer block (CoT-Block), which was applied in the backbone network model of the encoder-decoder to guide the learning of dynamic attentional matrices and enhance image feature extraction. Additionally, in the last layer of the decoder, we introduced a hybrid dilated convolution module, which can expand the receptive field and retain detailed spatial information, effectively extracting the global contextual information in fetal brain MRI. We quantitatively evaluated our method according to several performance measures: dice, precision, sensitivity, and specificity. In 80 fetal brain MRI scans with gestational ages ranging from 20 to 35 weeks, we obtained an average Dice similarity coefficient (DSC) of 83.79%, an average Volume Similarity (VS) of 84.84%, and an average Hausdorff95 Distance (HD95) of 35.66 mm. We also used several advanced deep learning segmentation models for comparison under equivalent conditions, and the results showed that our method was superior to other methods and exhibited an excellent segmentation performance." @default.
- W4313646596 created "2023-01-07" @default.
- W4313646596 creator A5010350753 @default.
- W4313646596 creator A5023363049 @default.
- W4313646596 creator A5023828194 @default.
- W4313646596 creator A5047536759 @default.
- W4313646596 creator A5054272691 @default.
- W4313646596 creator A5054617946 @default.
- W4313646596 creator A5062382444 @default.
- W4313646596 creator A5067822524 @default.
- W4313646596 date "2023-01-06" @default.
- W4313646596 modified "2023-10-11" @default.
- W4313646596 title "Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs" @default.
- W4313646596 cites W1891734390 @default.
- W4313646596 cites W1901129140 @default.
- W4313646596 cites W1987353801 @default.
- W4313646596 cites W2014173354 @default.
- W4313646596 cites W2024251722 @default.
- W4313646596 cites W2034628853 @default.
- W4313646596 cites W2041162236 @default.
- W4313646596 cites W2055190078 @default.
- W4313646596 cites W2077830707 @default.
- W4313646596 cites W2092081704 @default.
- W4313646596 cites W2093122815 @default.
- W4313646596 cites W2130776998 @default.
- W4313646596 cites W2352595529 @default.
- W4313646596 cites W2464708700 @default.
- W4313646596 cites W2883534172 @default.
- W4313646596 cites W2888011474 @default.
- W4313646596 cites W2895619167 @default.
- W4313646596 cites W2949461491 @default.
- W4313646596 cites W2962914239 @default.
- W4313646596 cites W2979967919 @default.
- W4313646596 cites W3097926519 @default.
- W4313646596 cites W3100262678 @default.
- W4313646596 cites W3103010481 @default.
- W4313646596 cites W3115552777 @default.
- W4313646596 cites W3182781195 @default.
- W4313646596 cites W3183430956 @default.
- W4313646596 cites W3187378100 @default.
- W4313646596 doi "https://doi.org/10.3390/s23020655" @default.
- W4313646596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36679449" @default.
- W4313646596 hasPublicationYear "2023" @default.
- W4313646596 type Work @default.
- W4313646596 citedByCount "3" @default.
- W4313646596 countsByYear W43136465962023 @default.
- W4313646596 crossrefType "journal-article" @default.
- W4313646596 hasAuthorship W4313646596A5010350753 @default.
- W4313646596 hasAuthorship W4313646596A5023363049 @default.
- W4313646596 hasAuthorship W4313646596A5023828194 @default.
- W4313646596 hasAuthorship W4313646596A5047536759 @default.
- W4313646596 hasAuthorship W4313646596A5054272691 @default.
- W4313646596 hasAuthorship W4313646596A5054617946 @default.
- W4313646596 hasAuthorship W4313646596A5062382444 @default.
- W4313646596 hasAuthorship W4313646596A5067822524 @default.
- W4313646596 hasBestOaLocation W43136465961 @default.
- W4313646596 hasConcept C108583219 @default.
- W4313646596 hasConcept C124504099 @default.
- W4313646596 hasConcept C153180895 @default.
- W4313646596 hasConcept C154945302 @default.
- W4313646596 hasConcept C15744967 @default.
- W4313646596 hasConcept C163892561 @default.
- W4313646596 hasConcept C169760540 @default.
- W4313646596 hasConcept C2779097318 @default.
- W4313646596 hasConcept C3018011982 @default.
- W4313646596 hasConcept C31972630 @default.
- W4313646596 hasConcept C41008148 @default.
- W4313646596 hasConcept C45715564 @default.
- W4313646596 hasConcept C89600930 @default.
- W4313646596 hasConceptScore W4313646596C108583219 @default.
- W4313646596 hasConceptScore W4313646596C124504099 @default.
- W4313646596 hasConceptScore W4313646596C153180895 @default.
- W4313646596 hasConceptScore W4313646596C154945302 @default.
- W4313646596 hasConceptScore W4313646596C15744967 @default.
- W4313646596 hasConceptScore W4313646596C163892561 @default.
- W4313646596 hasConceptScore W4313646596C169760540 @default.
- W4313646596 hasConceptScore W4313646596C2779097318 @default.
- W4313646596 hasConceptScore W4313646596C3018011982 @default.
- W4313646596 hasConceptScore W4313646596C31972630 @default.
- W4313646596 hasConceptScore W4313646596C41008148 @default.
- W4313646596 hasConceptScore W4313646596C45715564 @default.
- W4313646596 hasConceptScore W4313646596C89600930 @default.
- W4313646596 hasFunder F4320327665 @default.
- W4313646596 hasIssue "2" @default.
- W4313646596 hasLocation W43136465961 @default.
- W4313646596 hasLocation W43136465962 @default.
- W4313646596 hasLocation W43136465963 @default.
- W4313646596 hasOpenAccess W4313646596 @default.
- W4313646596 hasPrimaryLocation W43136465961 @default.
- W4313646596 hasRelatedWork W1669643531 @default.
- W4313646596 hasRelatedWork W1982826852 @default.
- W4313646596 hasRelatedWork W2005437358 @default.
- W4313646596 hasRelatedWork W2008656436 @default.
- W4313646596 hasRelatedWork W2023558673 @default.
- W4313646596 hasRelatedWork W2110230079 @default.
- W4313646596 hasRelatedWork W2134924024 @default.
- W4313646596 hasRelatedWork W2517104666 @default.
- W4313646596 hasRelatedWork W2790662084 @default.