Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313646766> ?p ?o ?g. }
- W4313646766 endingPage "1102" @default.
- W4313646766 startingPage "1102" @default.
- W4313646766 abstract "Angiogenesis is the development of new blood vessels from pre-existing ones. It is a complex multifaceted process that is essential for the adequate functioning of human organisms. The investigation of angiogenesis is conducted using various methods. One of the most popular and most serviceable of these methods in vitro is the short-term culture of endothelial cells on Matrigel. However, a significant disadvantage of this method is the manual analysis of a large number of microphotographs. In this regard, it is necessary to develop a technique for automating the annotation of images of capillary-like structures. Despite the increasing use of deep learning in biomedical image analysis, as far as we know, there still has not been a study on the application of this method to angiogenesis images. To the best of our knowledge, this article demonstrates the first tool based on a convolutional Unet++ encoder-decoder architecture for the semantic segmentation of in vitro angiogenesis simulation images followed by the resulting mask postprocessing for data analysis by experts. The first annotated dataset in this field, AngioCells, is also being made publicly available. To create this dataset, participants were recruited into a markup group, an annotation protocol was developed, and an interparticipant agreement study was carried out." @default.
- W4313646766 created "2023-01-07" @default.
- W4313646766 creator A5003005053 @default.
- W4313646766 creator A5004345140 @default.
- W4313646766 creator A5006841286 @default.
- W4313646766 creator A5010208405 @default.
- W4313646766 creator A5014234283 @default.
- W4313646766 creator A5015497916 @default.
- W4313646766 creator A5021815606 @default.
- W4313646766 creator A5032223259 @default.
- W4313646766 creator A5048619558 @default.
- W4313646766 creator A5063894265 @default.
- W4313646766 creator A5066956193 @default.
- W4313646766 creator A5067991693 @default.
- W4313646766 creator A5082652428 @default.
- W4313646766 creator A5087434408 @default.
- W4313646766 creator A5088141605 @default.
- W4313646766 creator A5088947292 @default.
- W4313646766 date "2023-01-06" @default.
- W4313646766 modified "2023-09-27" @default.
- W4313646766 title "Deep Semantic Segmentation of Angiogenesis Images" @default.
- W4313646766 cites W1269180417 @default.
- W4313646766 cites W1669383326 @default.
- W4313646766 cites W1679229092 @default.
- W4313646766 cites W1745334888 @default.
- W4313646766 cites W1901129140 @default.
- W4313646766 cites W1971324461 @default.
- W4313646766 cites W1980971505 @default.
- W4313646766 cites W1982630896 @default.
- W4313646766 cites W1983141048 @default.
- W4313646766 cites W1983763042 @default.
- W4313646766 cites W1984045815 @default.
- W4313646766 cites W1989492805 @default.
- W4313646766 cites W1992112921 @default.
- W4313646766 cites W2037548392 @default.
- W4313646766 cites W2049902469 @default.
- W4313646766 cites W2050499474 @default.
- W4313646766 cites W2053154970 @default.
- W4313646766 cites W2070829404 @default.
- W4313646766 cites W2077501711 @default.
- W4313646766 cites W2084875221 @default.
- W4313646766 cites W2094316880 @default.
- W4313646766 cites W2096085991 @default.
- W4313646766 cites W2098533150 @default.
- W4313646766 cites W2101425827 @default.
- W4313646766 cites W2110158442 @default.
- W4313646766 cites W2144026946 @default.
- W4313646766 cites W2155243985 @default.
- W4313646766 cites W2164777277 @default.
- W4313646766 cites W2166771618 @default.
- W4313646766 cites W2187337603 @default.
- W4313646766 cites W2302255633 @default.
- W4313646766 cites W2571939768 @default.
- W4313646766 cites W2589614452 @default.
- W4313646766 cites W2621213841 @default.
- W4313646766 cites W2733832810 @default.
- W4313646766 cites W2790813572 @default.
- W4313646766 cites W2793323124 @default.
- W4313646766 cites W2803326208 @default.
- W4313646766 cites W2884436604 @default.
- W4313646766 cites W2899262837 @default.
- W4313646766 cites W2912280046 @default.
- W4313646766 cites W2928165649 @default.
- W4313646766 cites W2951934944 @default.
- W4313646766 cites W2952303917 @default.
- W4313646766 cites W2958456312 @default.
- W4313646766 cites W2963351448 @default.
- W4313646766 cites W2963544187 @default.
- W4313646766 cites W2964309882 @default.
- W4313646766 cites W2982805640 @default.
- W4313646766 cites W3014304846 @default.
- W4313646766 cites W3024765254 @default.
- W4313646766 cites W3035160371 @default.
- W4313646766 cites W3035665735 @default.
- W4313646766 cites W3112139896 @default.
- W4313646766 cites W4200559177 @default.
- W4313646766 cites W4245635197 @default.
- W4313646766 cites W4281669664 @default.
- W4313646766 doi "https://doi.org/10.3390/ijms24021102" @default.
- W4313646766 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36674617" @default.
- W4313646766 hasPublicationYear "2023" @default.
- W4313646766 type Work @default.
- W4313646766 citedByCount "0" @default.
- W4313646766 crossrefType "journal-article" @default.
- W4313646766 hasAuthorship W4313646766A5003005053 @default.
- W4313646766 hasAuthorship W4313646766A5004345140 @default.
- W4313646766 hasAuthorship W4313646766A5006841286 @default.
- W4313646766 hasAuthorship W4313646766A5010208405 @default.
- W4313646766 hasAuthorship W4313646766A5014234283 @default.
- W4313646766 hasAuthorship W4313646766A5015497916 @default.
- W4313646766 hasAuthorship W4313646766A5021815606 @default.
- W4313646766 hasAuthorship W4313646766A5032223259 @default.
- W4313646766 hasAuthorship W4313646766A5048619558 @default.
- W4313646766 hasAuthorship W4313646766A5063894265 @default.
- W4313646766 hasAuthorship W4313646766A5066956193 @default.
- W4313646766 hasAuthorship W4313646766A5067991693 @default.
- W4313646766 hasAuthorship W4313646766A5082652428 @default.
- W4313646766 hasAuthorship W4313646766A5087434408 @default.