Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313647280> ?p ?o ?g. }
- W4313647280 endingPage "183" @default.
- W4313647280 startingPage "174" @default.
- W4313647280 abstract "Background As a major complication of non-valvular atrial fibrillation (NVAF), left atrial appendage (LAA) thrombosis is associated with cerebral ischemic strokes, as well as high morbidity. Due to insufficient incorporation of risk factors, most current scoring methods are limited to the analysis of relationships between clinical characteristics and LAA thrombosis rather than detecting potential risk. Therefore, this study proposes a clinical data-driven machine learning method to predict LAA thrombosis of NVAF. Methods Patients with NVAF from January 2014 to June 2022 were enrolled from Southwest Hospital. We selected 40 variables for analysis, including demographic data, medical history records, laboratory results, and the structure of LAA. Three machine learning algorithms were adopted to construct classifiers for the prediction of LAA thrombosis risk. The most important variables related to LAA thrombosis and their influences were recognized by SHapley Addictive exPlanations method. In addition, we compared our model with CHADS2 and CHADS2-VASc scoring methods. Results A total of 713 participants were recruited, including 127 patients with LAA thrombosis and 586 patients with no obvious thrombosis. The consensus models based on Random Forest and eXtreme Gradient Boosting LAA thrombosis prediction (RXTP) achieved the best accuracy of 0.865, significantly outperforming CHADS2 score and CHA2DS2-VASc score (0.757 and 0.754, respectively). The SHAP results showed that B-type natriuretic peptide, left atrial appendage width, C-reactive protein, Fibrinogen and estimated glomerular filtration rate are closely related to the risk of LAA thrombosis in nonvalvular atrial fibrillation. Conclusions The RXTP-NVAF model is the most effective model with the greatest ROC value and recall rate. The summarized risk factors obtained from SHAP enable the optimization of the treatment strategy, thereby preventing thromboembolism events and the occurrence of cardiogenic ischemic stroke." @default.
- W4313647280 created "2023-01-07" @default.
- W4313647280 creator A5004923438 @default.
- W4313647280 creator A5046225712 @default.
- W4313647280 creator A5049478188 @default.
- W4313647280 creator A5056544736 @default.
- W4313647280 creator A5066739281 @default.
- W4313647280 creator A5086529957 @default.
- W4313647280 date "2023-03-01" @default.
- W4313647280 modified "2023-10-17" @default.
- W4313647280 title "Medical record data-enabled machine learning can enhance prediction of left atrial appendage thrombosis in nonvalvular atrial fibrillation" @default.
- W4313647280 cites W1971347950 @default.
- W4313647280 cites W2030807938 @default.
- W4313647280 cites W2033941495 @default.
- W4313647280 cites W2051050818 @default.
- W4313647280 cites W2058987278 @default.
- W4313647280 cites W2062786076 @default.
- W4313647280 cites W2066238141 @default.
- W4313647280 cites W2071675848 @default.
- W4313647280 cites W2091818080 @default.
- W4313647280 cites W2093553238 @default.
- W4313647280 cites W2096784960 @default.
- W4313647280 cites W2099552145 @default.
- W4313647280 cites W2105888840 @default.
- W4313647280 cites W2133435868 @default.
- W4313647280 cites W213423119 @default.
- W4313647280 cites W2139245232 @default.
- W4313647280 cites W2147797899 @default.
- W4313647280 cites W2153073383 @default.
- W4313647280 cites W2162586165 @default.
- W4313647280 cites W2165331349 @default.
- W4313647280 cites W2177870565 @default.
- W4313647280 cites W2308680277 @default.
- W4313647280 cites W2509046846 @default.
- W4313647280 cites W2623635585 @default.
- W4313647280 cites W2664267452 @default.
- W4313647280 cites W2739783898 @default.
- W4313647280 cites W2769859679 @default.
- W4313647280 cites W2777440289 @default.
- W4313647280 cites W2782417194 @default.
- W4313647280 cites W2888736279 @default.
- W4313647280 cites W3000776376 @default.
- W4313647280 cites W3020235507 @default.
- W4313647280 cites W3021909817 @default.
- W4313647280 cites W3046305373 @default.
- W4313647280 cites W3085001821 @default.
- W4313647280 cites W3097239178 @default.
- W4313647280 cites W3121720572 @default.
- W4313647280 cites W3123126572 @default.
- W4313647280 cites W3137095766 @default.
- W4313647280 cites W3178799865 @default.
- W4313647280 cites W3201422670 @default.
- W4313647280 cites W3203569367 @default.
- W4313647280 cites W3207708112 @default.
- W4313647280 cites W4223534056 @default.
- W4313647280 cites W4230464228 @default.
- W4313647280 cites W4236773584 @default.
- W4313647280 doi "https://doi.org/10.1016/j.thromres.2023.01.001" @default.
- W4313647280 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36764084" @default.
- W4313647280 hasPublicationYear "2023" @default.
- W4313647280 type Work @default.
- W4313647280 citedByCount "0" @default.
- W4313647280 crossrefType "journal-article" @default.
- W4313647280 hasAuthorship W4313647280A5004923438 @default.
- W4313647280 hasAuthorship W4313647280A5046225712 @default.
- W4313647280 hasAuthorship W4313647280A5049478188 @default.
- W4313647280 hasAuthorship W4313647280A5056544736 @default.
- W4313647280 hasAuthorship W4313647280A5066739281 @default.
- W4313647280 hasAuthorship W4313647280A5086529957 @default.
- W4313647280 hasConcept C126322002 @default.
- W4313647280 hasConcept C127413603 @default.
- W4313647280 hasConcept C164705383 @default.
- W4313647280 hasConcept C2779161974 @default.
- W4313647280 hasConcept C2780645631 @default.
- W4313647280 hasConcept C2780868729 @default.
- W4313647280 hasConcept C71924100 @default.
- W4313647280 hasConcept C78519656 @default.
- W4313647280 hasConceptScore W4313647280C126322002 @default.
- W4313647280 hasConceptScore W4313647280C127413603 @default.
- W4313647280 hasConceptScore W4313647280C164705383 @default.
- W4313647280 hasConceptScore W4313647280C2779161974 @default.
- W4313647280 hasConceptScore W4313647280C2780645631 @default.
- W4313647280 hasConceptScore W4313647280C2780868729 @default.
- W4313647280 hasConceptScore W4313647280C71924100 @default.
- W4313647280 hasConceptScore W4313647280C78519656 @default.
- W4313647280 hasLocation W43136472801 @default.
- W4313647280 hasLocation W43136472802 @default.
- W4313647280 hasOpenAccess W4313647280 @default.
- W4313647280 hasPrimaryLocation W43136472801 @default.
- W4313647280 hasRelatedWork W1967841144 @default.
- W4313647280 hasRelatedWork W2018480046 @default.
- W4313647280 hasRelatedWork W2272431884 @default.
- W4313647280 hasRelatedWork W2319489406 @default.
- W4313647280 hasRelatedWork W2603808924 @default.
- W4313647280 hasRelatedWork W2763816051 @default.
- W4313647280 hasRelatedWork W3119640866 @default.
- W4313647280 hasRelatedWork W3168288631 @default.
- W4313647280 hasRelatedWork W4236955258 @default.